Commentaires fermés

Peut-on imiter le hasard ?

Trouvé via le mathoscope.

On trouve sur le site de l’APMEP un article assez court mais intéressant sur l’imitation du hasard. Tout démarre par une situation classique et assez connue (au moins des enseignants : c’est un classique des stages sur les statistiques de la formation continue) :

Demandez à quelques personnes de lancer cent fois une pièce de monnaie et de noter la suite des résultats des cent lancers en indiquant P pour pile et F pour face.

[...]

Demandez à quelques autres personnes de noter une suite inventée de cent P ou F imitant les résultats de cent lancers de pièce.

Comparez ensuite les résultats des deux groupes…

Comme vous le savez peut-être, c’est la liste où les P et les F sont les plus alternés qui sera l’œuvre d’un être humain, le hasard, lui, fournit des séries consécutives de P ou de F en général assez longues.

L’intérêt de l’article est que l’auteur s’attache, par le biais des graphes probabilistes (enseignement de spécialité en TES) à obtenir la probabilité d’obtenir, par le hasard, des listes d’au moins n faces identiques consécutives. Ainsi, par exemple, sur une série de 100 lancers, il y a plus d’une chance sur deux d’obtenir au moins une séquence FFFFFFF ou PPPPPPP.

Pour lire l’article c’est ici.
Je le mets aussi dans la bibliothèque du site.

Commentaires fermés

De l’enseignement de la géométrie

Trouvé sur le mathoscope.

Le portail des IREM met en ligne un document de Rudolf BKOUCHE intitulé De l'enseignement de la géométrie qui devrait intéresser tous les professeurs de mathématiques et dont voici le début de l’introduction :

Toute science a deux objectifs, celui de la construction de l’intelligibilité du monde et celui de la résolution des problèmes. Loin de s’opposer, ces deux objectifs sont complémentaires, c’est pour résoudre les problèmes que l’on rencontre que l’on est conduit à construire l’intelligibilité du monde, et c’est la construction de cette intelligibilité qui permet en retour de résoudre ces problèmes. Cette complémentarité doit apparaître dans l’enseignement d’une science et négliger l’un de ces objectifs revient à mutiler cet enseignement. Si la construction de l’intelligibilité se traduit pas l’élaboration d’un discours cohérent, la réduction de l’enseignement au seul discours de la science conduit à ce que nous avons appelé l’illusion langagière dont l’un des exemples emblématiques reste celui de la réforme dite des mathématiques modernes, mais la réduction de l’enseignement à la seule résolution des problèmes conduit au développement d’un activisme pédagogique qui réduit l’enseignement à un ensemble d’activités disparates comme l’a montré la contre-réforme qui a succédé à la réforme des mathématiques modernes et qui reste présente comme le montrent les programmes actuels. Au volontarisme de la réforme des années soixante-dix s’appuyant sur la notion de structure, on a opposé des activités à tout va, cet activisme pédagogique étant renforcé par un usage irraisonné de l’informatique, celle-ci se réduisant à un simple gadget. Cet activisme pédagogique s’est développé au détriment de toute structuration du savoir, occultant ainsi le caractère hypothético-déductif des mathématiques et s’appuyant sur une interprétation quelque peu simpliste de ce que l’on peut appeler le caractère expérimental des mathématiques. La géométrie élémentaire est née de deux grandes problématiques, d’une part la problématique de l’égalité, d’autre part la problématique de la forme. Ces problématiques fondatrices ont été oubliées avec la réforme des mathématiques modernes. Si l’oubli de ces problématiques avait une certaine cohérence lors de la réforme dans la mesure où celle-ci mettait en avant l’aspect structural des mathématiques, la contre-réforme, au nom d’une modernité mal comprise, n’a pas osé revenir à ces problématiques, se réfugiant dans l’étude de quelques situations dites concrètes, lesquelles, selon la vulgate constructiviste, devraient permettre aux élèves de reconstruire le savoir géométrique. Comme nous l’avons déjà dit, la fascination devant l’informatique ne pouvait que renforcer cette tendance.

Directement dans la biblothèque du site donc.

Commentaires fermés

Le théorème de Fermat : documentaire télé

Trouvé sur ABCmaths.

La version française du film de Simon Singh qui suit Andrew Wiles dans sa recherche de la preuve du Grand Théorème de Fermat (Fermat’s Last Theorem) énoncé au XVIIè siècle. Très bien réalisée, cette vulgarisation s’adresse à tous les curieux qu’ils soient doués en maths ou non.

Fermat prétendait que l’équation x^n + y^n = z^n n’admettait pas de solutions en entiers non nuls si n est plus grand que 2, sans en apporter la preuve qu’il prétendait détenir.
Gauss, Euler, Galois et tant d’autres ont cherché à l’obtenir et n’ont pas réussi.
Ce documentaire retrace l’histoire d’une recherche qui a duré plus de 300 ans.


Le theoreme de Fermat P1
envoyé par magic_stephanois

Le theoreme de Fermat P2
envoyé par magic_stephanois

Le theoreme de Fermat P3
envoyé par magic_stephanois

Le theoreme de Fermat P4
envoyé par magic_stephanois
Commentaires fermés

29976

Avec 29 796 « éloignements » d’étrangers en situation irrégulière, [Brice Hortefeux] s’est dit « fier » d’avoir atteint et même dépassé l’objectif fixé en début d’année de 28 000 reconduites « effectives » à la frontière.

Sans commentaire ou alors celui de Patrick Weil, directeur de recherche au CNRS, dans le Monde.

Zoom sur les métiers des mathématiques

Les métiers des mathématiques

J’ai trouvé sur le site environ3virgule14.net (dans un article qui présente la spécialité mathématiques en TS et qui peut aussi vous intéresser) un document intitulé Zoom sur les métiers des mathématiques.

Comme indiqué sur le site,

[il] est l’initiative de quatre associations : la Société de Mathématiques Appliquées et Industrielles (SMAI), la Société Mathématique de France (SMF), la Société Française de Statistique (SFDS) et l’association Femmes et Mathématiques. Le projet a été coordonné par Brigitte Lucquin et réalisé en partenariat avec l’Onisep.

Après une introduction sur l’utilité des mathématiques dans la société actuelle, le document propose 20 fiches métier où 20 personnes présentent le métier qu’elles exercent, leur parcours scolaire après le bac et de quelle façon les mathématiques interviennent dans leur travail.

Enseignement, médical et pharmaceutique, banques, finance, assurances, météorologie et spatial, transport, fiabilité-qualité, aide à la décision, cryptographie et sécurité, imagerie et musique : les secteurs d’activité sont divers et variés.

Le document me semble intéressant pour tous les élèves intéressés par les mathématiques et qui se cherchent une orientation, et il pourrait aussi donner des idées (et de la motivation ?) à d’autres.

Directement dans la bibliothèque du site, donc.

Commentaires fermés

Gestionnaire d’exercices dans Open Office

Trouvé sur le mathoscope.

« Gestionnaire d’exercices » est une macro pour OpenOffice.org s’installant facilement. Elle permet, entre autre, de trier des exercices, de les rechercher, de les assembler en un devoir, d’en ajouter de nouveaux, avec beaucoup d’options.

L’installation se fait via un fichier traitement de texte et ajoute un menu « Gestionnaire d’exercices » à OpenOffice.org. À partir de ce menu, on peut rechercher des exercices selon des critères très précis (une centaine possible) que l’on a définis ou téléchargés sur le site officiel. Actuellement, seules les maths disposent d’une base d’exercices et de critères de recherches téléchargeable sur le site, mais si des propositions sont faites, il est possible d’ajouter des pages de téléchargement d’exercices pour n’importe quelle matière.

Lire la suite sur Framasoft.

Commentaires fermés

Google Forest

Trouvé sur infos-du-net.

Google a maintenant un territoire à son nom. 80 km², une végétation luxuriante, des espèces animales rares… Cette parcelle de forêt vierge a été découverte il y a 3 ans… sur un écran d’ordinateur, via Google Earth. Une équipe internationale de chercheurs revient d’un voyage d’exploration.

Lire la suite.