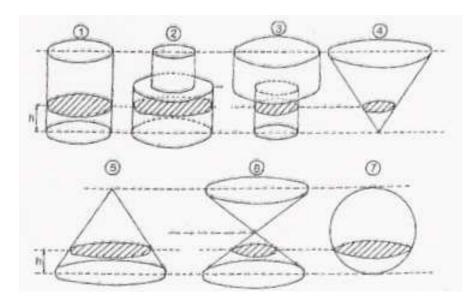
Devoir maison n°3

Fonctions - Calculs dans l'espace

Toutes les dimensions sont en centimètres.

On dispose de sept récipients, tous de même hauteur, dans lesquels on verse du liquide jusqu'à une hauteur h:



- Le récipient 1 est un cylindre dont la base est de rayon $\sqrt{54}$ et sa hauteur est de 18.
- Le récipient 2 est constitué de deux cylindres; celui du bas a sa base de rayon 9 et sa hauteur est de 10; celui du haut a sa base de rayon 4,5 et sa hauteur de 8.
- Le récipient 3 est le même que le récipient 2, le cylindre du haut et du bas étant inversés.
- Le récipient 4 est un cône de révolution dont la base est de rayon √162 et sa hauteur est de 18.
- Le récipient 5 est le même que le récipient 4 mais inversé.
- Le récipient 6 est constitué de deux cônes de révolution, tous deux de hauteur 9 et dont la base est de rayon $\sqrt{162}$.
- Le récipient 7 est une sphère de rayon 9.

Partie A

Calculer la valeur exacte du volume maximal de chacun de ces récipients. Que constate-t-on?

Partie B

On s'intéresse ici au récipient 1.

On le remplit de liquide jusqu'à une hauteur h.

- 1. Dans quel intervalle peut varier *h*?
- 2. Déterminer le volume de liquide pour h = 4.
- 3. Soit V_1 la fonction qui à une hauteur h associe le volume de liquide $V_1(h)$ contenu par le récipient 1.
 - (a) Donner l'expression de $V_1(h)$ en fonction de h.
 - (b) Recopier et compléter le tableau de valeurs suivant (on arrondira les résultats à l'unité) :

h	0	2	4	6	8	10	12	14	16	18
$V_1(h)$										

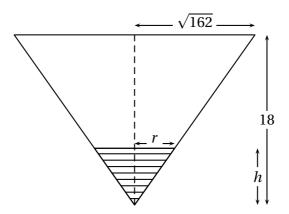
(c) Tracer la courbe représentative de la fonction V_1 dans le repère de la figure 3.1 page 65. Que constate-t-on?

Partie C

On s'intéresse ici au récipient 4.

On le remplit de liquide jusqu'à une hauteur h.

- 1. Dans quel intervalle peut varier h?
- 2. Soit V_4 la fonction qui à une hauteur h associe le volume de liquide $V_4(h)$ contenu par le récipient 4.
 - (a) On donne ci-dessous une vue en coupe de ce récipient contenant un liquide jusqu'à une hauteur h.



Montrer que $r = \frac{h\sqrt{162}}{18}$.

- (b) En déduire que $V_4(h) = \frac{h^3 \times \pi}{6}$ pour tout $h \in [0; 18]$.
- (c) Recopier et compléter le tableau de valeurs suivant (on arrondira les résultats à l'unité) :

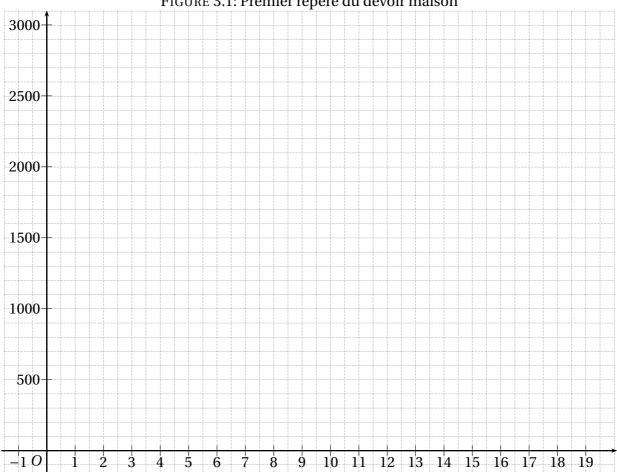
h	0	2	4	6	8	10	12	14	16	18
$V_4(h)$										

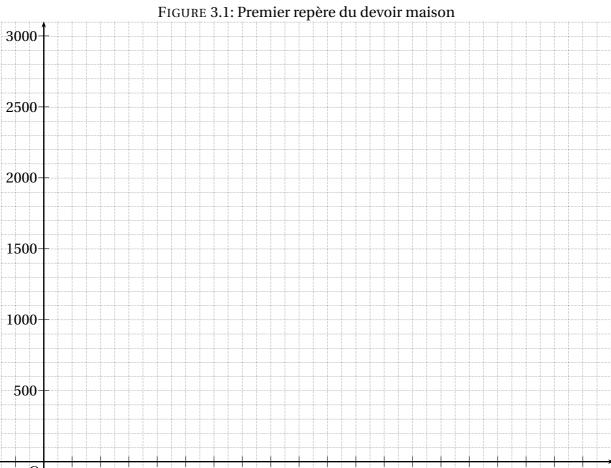
(d) Tracer la courbe représentative de la fonction V_4 dans le repère de la figure 3.1 page suivante.

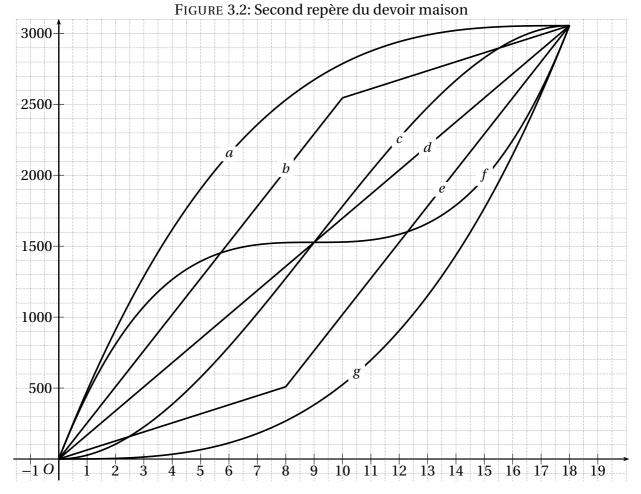
Partie D

On a tracé sur la figure 3.2 page ci-contre les courbes représentatives des fonctions $V_1, V_2, ..., V_7$ qui à une hauteur h associent les volumes de liquide contenus dans les récipients 1, 2, ..., 7.

- 1. Associer chaque courbe à chaque récipient en justifiant brièvement.
- 2. Avec la précision permise par le graphique, déterminer, pour chaque récipient, quelle hauteur de liquide est nécessaire pour remplir le récipient à moitié.







65 David ROBERT