Chapitre 9

Boucle « pour »

Sommaire

9.1	Exercices	87
9.2	Devoir maison	89

Ce chapitre est constitué uniquement d'exercices et d'un devoir maison qui doivent se faire sur le logiciel Algobox

9.1 Exercices

EXERCICE 9.1.

Écrire des algorithmes qui permettent de faire les dessins de la figure 9.1 page suivante.

EXERCICE 9.2.

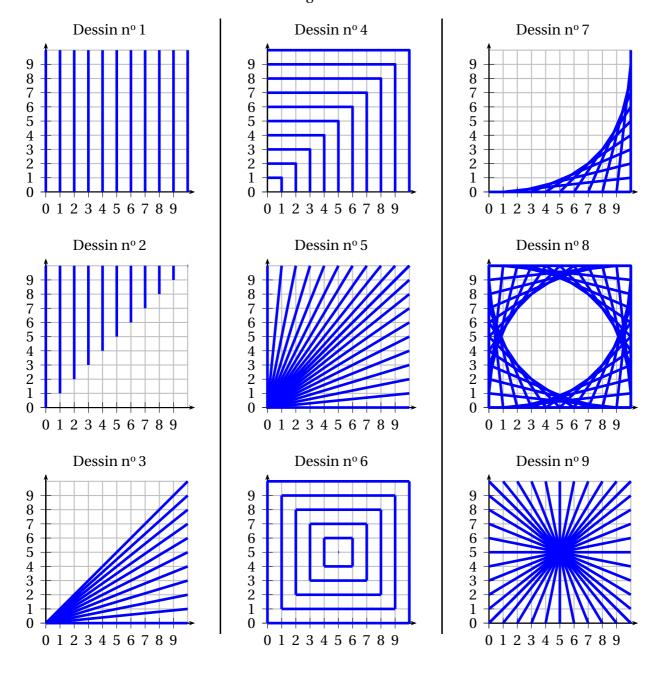
Écrire un algorithme prenant comme argument un nombre entier n et affichant tous les nombres entiers de 0 à n.

EXERCICE 9.3.

Écrire un algorithme prenant comme argument un nombre entier n et affichant la somme de tous les nombres entiers de 0 à n.

EXERCICE 9.4.

Écrire un algorithme prenant comme argument un nombre entier n et affichant le produit de tous les nombres entiers de 1 à n.


EXERCICE 9.5.

Écrire un algorithme prenant comme argument un nombre entier n et affichant tous les diviseurs de n.

Remarque. En langage Algobox, le reste de la division de x par y s'écrit x%y.

9.1 Exercices Seconde

FIGURE 9.1: Figures de l'exercice 9.1

Seconde 9.2 Devoir maison

9.2 Devoir maison

À rendre pour le vendredi 15 mars

Écrire, avec le logiciel Algobox, les algorithmes suivants :

Algorithme 1 : Un algorithme qui prend comme argument un nombre entier naturel n supérieur à 1 et qui affiche pour ce nombre n le nombre de ses diviseurs

Algorithme 2: Un algorithme qui prend comme argument un nombre entier naturel n supérieur à 1 et qui indique si ce nombre n est un nombre premier, c'est-à-dire un nombre ayant exactement deux diviseurs : 1 et n, ou s'il n'est pas un nombre premier

Algorithme 3: Un algorithme qui prend comme argument un nombre entier naturel n supérieur à 1 et qui affiche tous les nombres premiers compris entre 1 et n

On rappelle que dans le langage d'Algobox, le reste de la division de n par k s'obtient par la commande n%k.

On enverra ces algorithmes à david.robert@ac-rennes.fr.

David ROBERT 89