Exercice n°1:

- 1) a) L'image de -1 par f est égale à 4,5.
 - b) f(2) = -1.
 - c) Le nombre 4,5 a pour antécédents -3 et -1.
 - d) L'équation f(x) = 0 a pour ensemble de solutions : $\{1, 7, 5\}$.
- 2) L'inéquation f(x) < 1 a pour ensemble de solutions :]0,5;7,7[.
- 3) L'inéquation f(x) < -2 n'a pas de solution.
- 4) L'équation f(x) = k admet exactement 3 solutions lorsque k est compris entre 2 et 3 (au sens large).

Exercice n°2:

1)
$$f(-3) = \left(\frac{1}{2} \times (-3) + 1\right) \times (-3 - 3) = \left(-\frac{1}{2}\right) \times (-6) = 3.$$

2) Pour déterminer les antécédents de 0 pour f, il faut résoudre l'équation f(x) = 0.

$$f(x) = 0 \Leftrightarrow \left(\frac{1}{2}x + 1\right)(x - 3) = 0$$

$$\Leftrightarrow \frac{1}{2}x + 1 = 0 \text{ ou } x - 3 = 0$$

$$\Leftrightarrow \frac{1}{2}x = -1 \text{ ou } x = 3$$

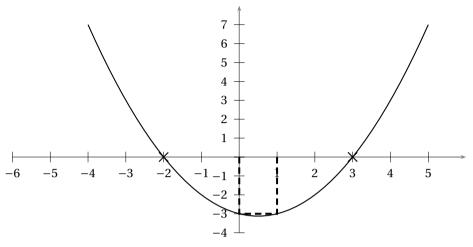
$$\Leftrightarrow x = -2 \text{ ou } x = 3$$

L'ensemble des solutions de l'équation f(x) = 0 est donc $\{-2, 3\}$.

3)
$$f(x) = \left(\frac{1}{2}x + 1\right)(x - 3) = \frac{1}{2}x^2 - \frac{3}{2}x + x - 3 = \frac{1}{2}x^2 - \frac{1}{2}x - 3.$$

4)
$$f(x) = -3 \Leftrightarrow \frac{1}{2}x^2 - \frac{1}{2}x - 3 = -3$$
$$\Leftrightarrow \frac{1}{2}x^2 - \frac{1}{2}x = 0$$
$$\Leftrightarrow \frac{1}{2}x(x-1)$$
$$\Leftrightarrow \frac{1}{2}x = 0 \text{ ou } x - 1 = 0$$
$$\Leftrightarrow x = 0 \text{ ou } x = 1.$$

L'ensemble des solutions de l'équation f(x) = -3 est donc $\{0;1\}$.



Exercice n°3:

Partie 1

1)
$$\overrightarrow{AB}$$
 $x_B - x_A = 2 - (-2) = 4$
 $y_B - y_A = 5 - 3 = 2$

2) On a \overrightarrow{DC} | $x_C - x_D = 22 - x_D$ et ABCD est un parallélogramme si, et seule- $y_C - y_D = -35 - y_D$

ment si $\overrightarrow{AB} = \overrightarrow{DC}$, ce qui donne le système : $\begin{cases} 4 = 22 - x_D \\ 2 = -35 - y_D \end{cases} \Leftrightarrow \begin{cases} x_D = 18 \\ y_D = -37 \end{cases}$ donc

3) AC =
$$\sqrt{(x_C - x_A)^2 + (y_C - y_A)^2} = \sqrt{(22 - (-2))^2 + (-35 - 3)^2} = \sqrt{2020} = 2\sqrt{505}$$
.

4) BD =
$$\sqrt{(x_B - x_D)^2 + (y_B - y_D)^2} = \sqrt{(2 - 18)^2 + (2 - (-37))^2} = \sqrt{2020} = 2\sqrt{505}$$
.

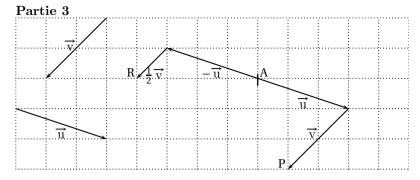
ABCD est un parallélogramme dont les deux diagonales AC et BD ont la même longueur, c'est donc un rectangle.

Remarque : il y a bien d'autres façons de prouver que ABCD est un rectangle

Partie 2

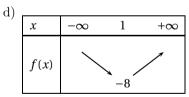
Hervé ne peut pas appliquer la relation de Chasles à la somme $\overrightarrow{AB} + \overrightarrow{AD}$ car l'origine du 2^e vecteur n'est pas égal à l'extrémité du premier.

Par contre ABCD est un parallélogramme donc $\overrightarrow{AD} = \overrightarrow{BC}$ et il peut écrire : $\overrightarrow{AB} + \overrightarrow{AD} = \overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$.



Exercice n°4:

- 1) La fonction f est une fonction polynôme du second degré, appelée aussi trinôme du second degré et sa courbe représentative est une parabole.
- 2) $2(x-1)^2 8 = 2(x^2 2x + 1) 8 = 2x^2 4x + 2 8 = 2x^2 4x 6$ donc $f(x) = 2(x-1)^2 - 8$.
- 3) $2(x-3)(x+1) = 2(x^2+x-3x-3) = 2(x^2-2x-3) = 2x^2-4x-6$ donc f(x) = 2(x-3)(x+1).
- 4) a) La forme canonique de f est $f(x) = 2(x-1)^2 8$ donc l'abscisse du sommet est égale à 1.
 - b) (\mathcal{C}_f) coupe (Ox) lorsque $f(x) = 0 \Leftrightarrow 2(x-3)(x+1) = 0 \Leftrightarrow x = 3$ ou x = -1. Donc (\mathcal{C}_f) coupe l'axe des abscisses aux points d'abscisses -1 et 3.
 - c) La forme canonique de f est $f(x) = 2(x-1)^2 8$ donc le minimum de f sur \mathbb{R} est égal à -8.



e) Je résous $x-3=0 \Leftrightarrow x=3$ et $x+1=0 \Leftrightarrow x=-1$

x	$-\infty$	_	1	3		+∞
2		+	+		+	
x-3		_	ı	Ò	+	
<i>x</i> + 1		- () +		+	
2(x-3)(x+1)		+ () –	Ò	+	

f) $f(x) = -6 \Leftrightarrow 2x^2 - 4x - 6 = -6 \Leftrightarrow 2x(x-2) = 0 \Leftrightarrow x = 0 \text{ ou } x = 2.$ Donc l'ensemble des solutions de l'équation f(x) = -6 est $\{0; 2\}$.

Exercice n°5:

Partie 1

- 1) On a : $\frac{1\times3,2+4\times3,6+\ldots+7\times4,8}{50}$ = 4,2 donc la taille moyenne d'un alligator mâle est de 4,2 mètres.
- 2) 44 alligators sur un total de 100 sont dans l'intervalle [3,8;4,2[ce qui correspond à une fréquence de $\frac{44}{100}$ = 0,44 = 44%.

Partie 2 Les alligators étant prélevés au hasard, nous sommes dans une situation d'équiprobabilité.

- 1) $p(A) = \frac{74}{100} = 0.74 \text{ et } p(M) = \frac{50}{100} = \frac{1}{2}.$
- 2) \overline{A} est l'événement : « l'alligator a une taille supérieure ou égale à 4,2 m » et $p(\overline{A}) = 1 p(A) = 0,26$.
- 3) $A \cap M$ est l'événement : « l'alligator est un mâle mesurant strictement moins de 4,2 mètres » et $p(A \cap M) = \frac{26}{100} = 0,26$.
- 4) $p(A \cup M) = p(A) + p(M) p(A \cap M) = 0.74 + 0.5 0.26 = 0.98$.

Exercice n°6:

1

		Entrée			Sortie pour	Sortie pour
					l'algorithme 1	l'algorithme 2
.)		A	В	С		
	Premier test	3	-1	27	-1	27
	Deuxième test	2	7	12	2	12
	Troisième test	4,5	7,5	1,5	1,5	7,5

2) Le 1^{er} algorithme affiche le plus petit des trois nombres A, B, C et le 2^e algorithme affiche le plus grand.

Exercice n°7:

Méthode choisie : Repère et vecteurs colinéaires.

Dans le repère $(A, \overrightarrow{AD}, \overrightarrow{AB})$, on a les coordonnées : $E\left(\frac{21}{8}; 0\right)$, F(1; 1) et $C\left(0; \frac{13}{8}\right)$.

Le vecteur \overrightarrow{EF} a pour coordonnées : $\left(-\frac{13}{8};1\right)$ et le vecteur \overrightarrow{FC} a pour coordonnées : $\left(-1;\frac{5}{8}\right)$.

On obtient : $-\frac{13}{8} \times \frac{5}{8} - 1 \times (-1) = \frac{1}{64} \neq 0$, les vecteurs \overrightarrow{EF} et \overrightarrow{FC} ne sont pas colinéaires, donc les points E, F et C ne sont pas alignés.