Devoir maison n°2

Élasticité

À rendre pour le vendredi 22 février

Après une étude de marché, on a modélisé l'offre f(x) et la demande g(x) d'un produit en fonction de son prix unitaire x, pour $x \in [1; 8]$: $f(x) = 10 \times 1,9^x$ et $g(x) = 600 \times 0,5^x$, le prix unitaire étant exprimé en euros, et f(x) et g(x) donnant le nombre d'objets offerts ou demandés en milliers.

- 1. Déterminer le prix d'équilibre du produit.
- 2. (a) Étudier le sens de variation de *f* , puis de *g* sur [1; 8].
 - (b) Tracer les représentations graphiques de f et de g dans un même repère orthogonal.
 - (c) Vérifier graphiquement le prix d'équilibre trouvé à la question 1.
- 3. On considère la fonction E_f définie sur I par :

$$E_f(x) = x \frac{f'(x)}{f(x)}$$
 où f' désigne la fonction dérivée de f .

Le nombre $E_f(x)$ s'appelle « élasticité de l'offre par rapport au prix x »; on admet qu'il indique le pourcentage de variation de l'offre pour un accroissement de 1% d'un prix x donné. $E_f(x)$ est négatif lors d'une diminution de l'offre.

- (a) i. En remarquant que $1,9 = e^{\ln(1,9)}$, montrer qu'on peut écrire $f(x) = Ke^{px}$.

 On donnera les valeurs exactes de K et p.
 - ii. En déduire f'(x).
- (b) Déterminer l'élasticité-prix instantané de l'offre en fonction du prix x.
- (c) Calculer cette élasticité pour un prix unitaire de 4 €.
- (d) En donner une interprétation en terme de variation.
- 4. En vous inspirant des questions précédentes, déterminer l'élasticité-prix de la demande en fonction du prix x, calculer cette élasticité pour un prix unitaire de $4 \in$ et en donner une interprétation.

Devoir maison n°2

Élasticité

À rendre pour le vendredi 22 février

Après une étude de marché, on a modélisé l'offre f(x) et la demande g(x) d'un produit en fonction de son prix unitaire x, pour $x \in [1;8]$: $f(x) = 10 \times 1,9^x$ et $g(x) = 600 \times 0,5^x$, le prix unitaire étant exprimé en euros, et f(x) et g(x) donnant le nombre d'objets offerts ou demandés en milliers.

- 1. Déterminer le prix d'équilibre du produit.
- 2. (a) Étudier le sens de variation de f, puis de g sur [1; 8].
 - (b) Tracer les représentations graphiques de f et de g dans un même repère orthogonal.
 - (c) Vérifier graphiquement le prix d'équilibre trouvé à la question 1.
- 3. On considère la fonction E_f définie sur I par :

$$E_f(x) = x \frac{f'(x)}{f(x)}$$
 où f' désigne la fonction dérivée de f .

Le nombre $E_f(x)$ s'appelle « élasticité de l'offre par rapport au prix x »; on admet qu'il indique le pourcentage de variation de l'offre pour un accroissement de 1% d'un prix x donné. $E_f(x)$ est négatif lors d'une diminution de l'offre.

(a) i. En remarquant que 1,9 = $e^{\ln(1,9)}$, montrer qu'on peut écrire $f(x) = Ke^{px}$.

On donnera les valeurs exactes de K et p.

- ii. En déduire f'(x).
- (b) Déterminer l'élasticité-prix instantané de l'offre en fonction du prix x.
- (c) Calculer cette élasticité pour un prix unitaire de $4 \in$.
- (d) En donner une interprétation en terme de variation.
- 4. En vous inspirant des questions précédentes, déterminer l'élasticité-prix de la demande en fonction du prix x, calculer cette élasticité pour un prix unitaire de $4 \in$ et en donner une interprétation.