# Chapitre 1

# Second degré

| •  |       | •   |    |
|----|-------|-----|----|
|    | mn    | าวเ | ro |
| OU | '1111 | ıaı | ıv |

| 1.1        | Activi | tés                                  |
|------------|--------|--------------------------------------|
| <b>1.2</b> | Trinô  | me                                   |
|            | 1.2.1  | Définition, forme développée         |
|            | 1.2.2  | Forme canonique                      |
|            | 1.2.3  | Racines et discriminant              |
|            | 1.2.4  | Forme factorisée, signe d'un trinôme |
| 1.3        | Fonct  | ion trinôme                          |
|            | 1.3.1  | Définition                           |
|            | 1.3.2  | Sens de variation                    |
| 1.4        | Bilan  |                                      |
| 1.5        | Exerc  | ices et problèmes                    |
|            | 1.5.1  | Démonstration(s)                     |
|            | 1.5.2  | Technique                            |
|            | 1.5.3  | Algorithmique                        |
|            | 1.5.4  | Technologie                          |
|            | 1.5.5  | Problèmes                            |

## 1.1 Activités

### ACTIVITÉ 1.1.

Soient f et g deux fonctions définies sur  $\mathbb{R}$  par, respectivement :  $f(x) = 2x^2 - x - 1$  et  $g(x) = 2\left(x - \frac{1}{4}\right)^2 - \frac{9}{8}$ .

- 1. Montrer que, pour tout réel x, f(x) = g(x).
- 2. En déduire l'extremum de f.
- 3. En déduire les éventuelles solutions de l'équation f(x) = 0.
- 4. En déduire le signe de f selon les valeurs de x

On vient de voir, sur un exemple, que lorsqu'une fonction trinôme  $f(x) = ax^2 + bx + c$  est écrite sous la forme  $f(x) = k(x-\alpha)^2 + \beta$ , appelée forme canonique (on admettra qu'une telle forme existe toujours), alors il est plus facile d'en étudier les caractéristiques. En Seconde, cette seconde forme était toujours donnée, en Première nous allons apprendre à la trouver, c'est-à-dire à trouver k,  $\alpha$  et  $\beta$  à partir de a, b et c.

1.2 Trinôme Première L

ACTIVITÉ 1.2 (Cas général).

Soit f la fonction définie sur  $\mathbb{R}$  par  $f(x) = ax^2 + bx + c$  où a, b et c sont des réels, avec  $a \neq 0$  et k,  $\alpha$  et  $\beta$  trois réels tels qu'on a aussi  $f(x) = k(x - \alpha)^2 + \beta$ .

- 1. Développer  $k(x-\alpha)^2 + \beta$ .
- 2. On admet que deux fonctions trinômes  $f: x \mapsto ax^2 + bx + c$  et  $g: x \mapsto a'x^2 + b'x + c'$  sont égales pour tout  $x \in \mathbb{R}$  si et seulement si a = a', b = b' et c = c'. En déduire a, b et c en fonction de c, a et c.
- 3. En déduire k,  $\alpha$  et  $\beta$  en fonction de a, b et c.
- 4. Application : on donne  $f(x) = -3x^2 + 6x 4$  pour tout  $x \in \mathbb{R}$ .
  - (a) Déterminer la forme canonique de f
  - (b) En déduire l'extremum de f.
  - (c) En déduire les éventuelles solutions de l'équation f(x) = 0.
  - (d) En déduire le signe de *f* selon les valeurs de *x*

### 1.2 Trinôme

## 1.2.1 Définition, forme développée

**Définition 1.1.** On appelle *trinôme* toute expression qui peut s'écrire sous la forme  $ax^2 + bx + c$  où a, b et c sont des réels et  $a \ne 0$ . Cette forme s'appelle la *forme développée* du trinôme.

# 1.2.2 Forme canonique

**Théorème 1.1.** Tout trinôme  $ax^2 + bx + c$  peut s'écrire sous la forme  $k(x - \alpha)^2 + \beta$  où k,  $\alpha$  et  $\beta$  sont des réels. Cette forme s'appelle la forme canonique du trinôme.

*Preuve.* L'activité 1.2 a montré que 
$$k=a$$
,  $\alpha=-\frac{b}{2a}$  et  $\beta=-\frac{b^2-4ac}{4a}$ .

*Remarque*. Pour alléger les écritures, et parce que cette quantité aura un rôle important plus tard, on notera :  $\Delta = b^2 - 4ac$ .

La forme canonique devient alors:

**Propriété 1.2.** Si 
$$a \ne 0$$
 alors  $ax^2 + bx + c = a(x - \alpha)^2 + \beta = a\left(x + \frac{b}{2a}\right)^2 - \frac{\Delta}{4a}$  où  $\Delta = b^2 - 4ac$ .

## 1.2.3 Racines et discriminant

**Définitions 1.2.** Soit un trinôme  $ax^2 + bx + c$ . On appelle :

- racine du trinôme tout réel solution de l'équation  $ax^2 + bx + c = 0$ ;
- *discriminant* du trinôme, noté  $\Delta$ , le nombre  $\Delta = b^2 4ac$ .

**Propriété 1.3.** *Soit ax*<sup>2</sup> + *bx* + *c un trinôme et*  $\Delta = b^2 - 4ac$  *son discrimant.* 

- $Si \Delta < 0$ , alors le trinôme **n'a pas de racine**.
- $Si \Delta = 0$ , alors le trinôme a une unique racine :  $x_0 = \alpha = -\frac{b}{2a}$ .
- $Si \Delta > 0$ , alors le trinôme a **deux racines** :  $x_1 = \frac{-b + \sqrt{\Delta}}{2a}$  et  $x_2 = \frac{-b \sqrt{\Delta}}{2a}$

*Preuve.* La preuve sera faite en classe.

 $\Diamond$ 

Première L 1.3 Fonction trinôme

Remarques.

• Le signe de  $\Delta$  permet de *discriminer* <sup>1</sup> les équations de type  $ax^2 + bx + c = 0$  qui ont zéro, une ou deux solutions, c'est la raison pour laquelle on l'appelle le *discriminant*.

• Si  $\Delta = 0$  les formules permettant d'obtenir  $x_1$  et  $x_2$  donnent  $x_1 = x_0 = \alpha$  et  $x_2 = x_0 = \alpha$ ; pour cette raison, on appelle parfois  $x_0$  la *racine double* du trinôme.

# 1.2.4 Forme factorisée, signe d'un trinôme

**Propriété 1.4.** *Soit*  $ax^2 + bx + c$  *un trinôme.* 

- Si le trinôme a deux racines  $x_1$  et  $x_2$  alors  $ax^2 + bx + c = a(x x_1)(x x_2)$ .
- Si le trinôme a une racine  $x_0$  alors  $ax^2 + bx + c = a(x x_0)(x x_0) = a(x x_0)^2$ .
- Si le trinôme n'a pas de racine, une telle factorisation est impossible.

Cette écriture, lorsqu'elle existe, est appelée forme factorisée du trinôme.

Preuve. On a obtenu les formes factorisées dans la démonstration précédente.

**Propriété.** *Soit*  $ax^2 + bx + c$  *un trinôme.* 

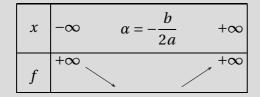
- Si le trinôme n'a pas de racine,  $ax^2 + bx + c$  est strictement du signe de a pour tout x.
- Si le trinôme a une racine,  $ax^2 + bx + c$  est du signe de a (il s'annule quand  $x = -\frac{b}{2a}$ ).
- Si le trinôme a deux racines  $x_1$  et  $x_2$ ,  $ax^2 + bx + c$  est:
  - · strictement du signe de a quand  $x \in ]-\infty; x_1[\cup]x_2; +\infty[;$
  - · strictement du signe opposé de a quand  $x \in ]x_1; x_2[$ ;
  - · s'annule en  $x_1$  et en  $x_2$ .

On peut aussi énoncer cette propriété de la façon synthétique suivante :

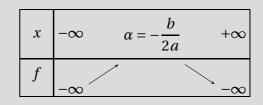
**Propriété 1.5.** Un trinôme  $ax^2 + bx + c$  est du signe de a sauf entre les racines, si elles existent.

Preuve. La preuve sera faite en classe.

### 1.3 Fonction trinôme


### 1.3.1 Définition

**Définition 1.3.** On appelle *fonction trinôme* une fonction f, définie sur  $\mathbb{R}$ , qui à x associe  $f(x) = ax^2 + bx + c$  où  $a \neq 0$ .


### 1.3.2 Sens de variation

**Propriété 1.6.** Soit  $f(x) = ax^2 + bx + c$  une fonction trinôme. Alors f a les variations résumées dans les tableaux ci-dessous :

•  $Si \, a > 0$ :



•  $Si \ a < 0$ :



*Preuve.* Voir l'exercice 1.1 page 7.

David ROBERT 5

<sup>1.</sup> Discriminer. *v. tr.* Faire la discrimination, c'est-à-dire l'action de distinguer l'un de l'autre deux objets, ici des équations

1.4 Bilan Première L

# 1.4 Bilan

Le tableau  $1.1\,$  de la présente page résume les choses à retenir sur le chapitre.

TABLE 1.1: Bilan du second degré

|                 | $\Delta = b^2 - 4ac$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|                 | $\Delta < 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\Delta = 0$                                                            | $\Delta > 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |
|                 | $ax^2 + bx + c = 0$ n'a pas de solution dans $\mathbb{R}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $ax^2 + bx + c = 0$ a une solution: $x_0 = \alpha = -\frac{b}{2a}$      | $ax^2 + bx + c = 0$ a deux<br>solutions $x_1 = \frac{-b - \sqrt{\Delta}}{2a}$ et<br>$x_2 = \frac{-b + \sqrt{\Delta}}{2a}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |
|                 | $ax^2 + bx + c$ n'a pas de racine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $ax^2 + bx + c$ a une racine double                                     | $ax^2 + bx + c$ a deux racines                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
|                 | Aucune factorisation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $ax^2 + bx + c = a(x - x_0)^2$                                          | $ax^2 + bx + c =$ $a(x - x_1)(x - x_2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
|                 | $x \mapsto ax^2 + bx + c$ est décre $[-\frac{b}{2a}; +\infty[$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $+ c$ est décroissante sur $]-\infty; -\frac{b}{2a}]$ et croissante sur |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
| Si <i>a</i> > 0 | $\frac{1}{-\frac{b}{2a}O} = \frac{y}{x}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $O \mid x_0 = -\frac{b}{2a} \mid X$                                     | $\begin{array}{c c} & y \\ \hline & x_1 & -\frac{b}{2a} & x_2 \\ \hline & b & x \\ \hline & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$ |  |  |  |
|                 | $ax^2 + bx + c > 0 \text{ sur } \mathbb{R}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $ax^2 + bx + c \geqslant 0 \operatorname{sur} \mathbb{R}$               | $ax^{2} + bx + c \geqslant 0 \text{ sur}$ $] - \infty; x_{1}] \cup [x_{2}; +\infty[$ et $ax^{2} + bx + c \leqslant 0 \text{ sur}$ $[x_{1}; x_{2}]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
|                 | $x \mapsto ax^2 + bx + c$ est croissante sur $]-\infty; -\frac{b}{2a}]$ et décroissante sur $[-\frac{b}{2a}; +\infty[$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
| Si <i>a</i> < 0 | $ \begin{array}{c c}  & y \\  & -\frac{b}{2a} \\  & \downarrow $ | $x_0 = -\frac{b}{2a}$ $O$ $X$                                           | $\begin{array}{c c} & & & & & & \\ \hline & & & & & \\ \hline & & & & &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
|                 | $ax^2 + bx + c < 0 \operatorname{sur} \mathbb{R}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $ax^2 + bx + c \leqslant 0 \operatorname{sur} \mathbb{R}$               | $ax^{2} + bx + c \leq 0 \text{ sur}$ $] - \infty; x_{1}] \cup [x_{2}; +\infty[$ et $ax^{2} + bx + c \geq 0 \text{ sur}$ $[x_{1}; x_{2}]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |

# 1.5 Exercices et problèmes

# 1.5.1 Démonstration(s)

EXERCICE 1.1.

Soit f une fonction définie sur  $\mathbb{R}$  telle que  $f(x) = ax^2 + bx + c = a\left(x + \frac{b}{2a}\right)^2 - \frac{\Delta}{4a}$  où  $a \neq 0$ . Dans chacun des cas suivants, compléter :

1. 
$$a > 0$$
 et  $x_1 < x_2 \le -\frac{b}{2a}$ 

Donc *f* est ......sur ......

2. 
$$a > 0$$
 et  $-\frac{b}{2a} \le x_1 < x_2$ 

Donc *f* est ......sur ......

3. 
$$a < 0$$
 et  $x_1 < x_2 \leqslant -\frac{b}{2a}$ 

Donc f est ......sur .....

4. 
$$a < 0$$
 et  $-\frac{b}{2a} \le x_1 < x_2$ 

Donc f est ......sur .....

#### EXERCICE 1.2.

Soit f une fonction définie sur  $\mathbb{R}$  par  $f(x) = ax^2 + bx + c$  où  $a \neq 0$ .

- 1. Montrer que si a et c sont de signes opposés alors l'équation f(x) = 0 admet deux solutions.
- 2. Peut-on affirmer que si l'équation f(x) = 0 admet deux solutions alors a et c sont de signes opposés?

# 1.5.2 Technique

EXERCICE 1.3.

Résoudre dans  $\mathbb{R}$ , sans utiliser les propriétés des trinômes, les équations suivantes :

• 
$$x^2 = 9$$
:

• 
$$(x-5)^2 = 3$$

• 
$$(3x+5)^2 = (x+1)^2$$
:

• 
$$x^2 = -3$$
:

• 
$$(5x-4)^2 - (3x+7)^2 = 0$$
:

• 
$$(x-5)^2 = 3$$
;  
•  $(3x+5)^2 = (x+1)^2$ ;  
•  $(5x-4)^2 - (3x+7)^2 = 0$ ;  
•  $(2x-1)^2 + x(1-2x) = 4x^2 - 1$ .

EXERCICE 1.4.

Résoudre dans  $\mathbb{R}$  les équations suivantes :

• 
$$4x^2 - x - 3$$

• 
$$(t+1)^2 + 3 = 0$$
;

• 
$$x^2 + 10^{50}x + 25 \times 10^{98} = 0$$
;

• 
$$x^2 - x - 2$$
;

• 
$$x^2 + 3x = 0$$
:

• 
$$2(2x+1)^2-(2x+1)-6=0$$
.

• 
$$4x^2 - x - 3 = 0$$
;  
•  $x^2 - x - 2$ ;  
•  $x^2 - 4x + 4 = 0$ ;  
•  $3x^2 + 2x + 7 = 0$ ;  
•  $(t+1)^2 + 3 = 0$ ;  
•  $x^2 + 3x = 0$ ;  
•  $4x^2 - 9 = 0$ ;  
•  $x^2 + 9 = 0$ ;

• 
$$4x^2 - 9 = 0$$

• 
$$3x^2 + 2x + 7 = 0$$

• 
$$x^2 + 9 = 0$$
:

EXERCICE 1.5.

On note  $P(x) = -2x^2 - x + 1$ .

1. Résoudre 
$$P(x) = 0$$
.

2. Factoriser 
$$P(x)$$
.

3. Résoudre 
$$P(x) \leq 0$$
.

EXERCICE 1.6.

Pour les fonctions données ci-après et définies sur  $\mathbb{R}$ :

- Déterminer les éventuelles valeurs de *x* pour lesquelles la fonction s'annule.
- Donner le signe de la fonction selon les valeurs de x.

1. 
$$f(x) = x^2 + x + 1$$

3. 
$$h(x) = x^2 - x - 2$$

5. 
$$i(x) = -x^2 + 2x - 2$$

2. 
$$g(x) = -x^2 - x + 1$$

1. 
$$f(x) = x^2 + x + 1$$
  
2.  $g(x) = -x^2 - x + 1$   
3.  $h(x) = x^2 - x - 2$   
4.  $i(x) = -x^2 + 2x - 1$ 

EXERCICE 1.7.

Résoudre les équations et inéquations suivantes :

• 
$$\frac{2x-5}{x-1} = \frac{x-1}{x+1}$$

• 
$$\frac{3x^2+x+1}{x^2-3x-10} > 0$$
.

• 
$$\frac{x^2-3x+2}{-x^2+2x+3} \geqslant 0$$

# 1.5.3 Algorithmique

EXERCICE 1.8.

Les algorithmes à écrire suivants prennent tous comme arguments trois réels a, b et c avec  $a \neq 0$ .

- 1. Écrire un algorithme donnant  $\alpha$  et  $\beta$  de la forme canonique.
- 2. Écrire un algorithme renvoyant la valeur du discriminant du trinôme  $ax^2 + bx + c$ .
- 3. Écrire un algorithme renvoyant le signe du discriminant du trinôme  $ax^2 + bx + c$ .
- 4. Écrire un algorithme renvoyant le nombre de racines du trinôme  $ax^2 + bx + c$ .
- 5. Écrire un algorithme renvoyant le nombre de racines du trinôme  $ax^2 + bx + c$  et la valeur de ces racines, le cas échéant.
- 6. Écrire un algorithme renvoyant le signe du trinôme  $ax^2 + bx + c$  suivant les valeurs de x.

# 1.5.4 Technologie

### EXERCICE 1.9.

Soit f la fonction polynôme définie sur  $\mathbb{R}$  par  $f(x) = -x^3 - 3x^2 + 13x + 15$ .

- 1. Montrer que x = -1 est racine de ce polynôme.
- 2. Déterminer trois réels a, b et c tels que  $f(x) = (x+1)(ax^2 + bx + c)$ .
- 3. (a) Terminer la factorisation de f(x).
  - (b) Résolvez l'inéquation f(x) > 0.

### EXERCICE 1.10.

Soit f la fonction définie sur  $\mathbb{R}$  par  $f(x) = -3x^2 + 2x + 1$ . On note  $\mathscr{C}$  la courbe représentative de f dans un repère  $(0; \vec{\imath}, \vec{\jmath})$ .

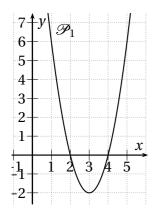
- 1. Précisez la nature de la courbe  $\mathscr{C}$  et les coordonnées de son sommet S.
- 2. Montrer que la courbe  $\mathscr C$  coupe l'axe des ordonnées en un point dont on précisera les coordonnées.
- 3. Montrer que la courbe  $\mathscr C$  coupe l'axe des abscisses en deux points A et B dont on précisera les coordonnées.
- 4. Pour quelles valeurs de x la courbe  $\mathscr C$  est-elle situé au dessus de l'axe des abscisses?

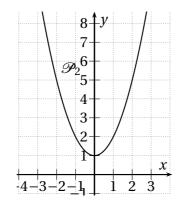
### EXERCICE 1.11.

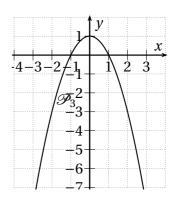
Voici quatre équations :

1. 
$$y = x^2 - 6x + 8$$

2. 
$$y = 2(x-2)(x-4)$$


3. 
$$y = x^2 + 1$$


4. 
$$y = 1 - x^2$$


La figure 1.1 de la présente page propose quatre paraboles.

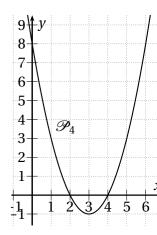

Retrouver l'équation de chacune de ces paraboles en justifiant.

FIGURE 1.1: Paraboles de l'exercice 1.11







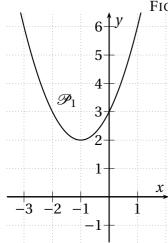


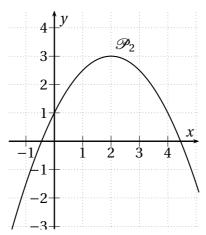
### EXERCICE 1.12.

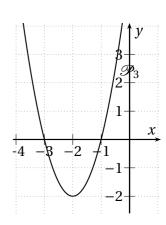
Chacune des trois paraboles de la figure 1.2 page suivante est la représentation graphique d'une fonction trinôme. Déterminer l'expression de chacune de ces fonctions.

### EXERCICE 1.13.

On donne, définies sur  $\mathbb{R}$ , les fonctions  $f(x) = x^2 + x - 1$  et g(x) = x + 3.


- 1. Déterminer les coordonnées des éventuels points d'intersection des courbes de f et de g.
- 2. Déterminer les positions relatives des courbes de f et de g c'est-à-dire les valeurs de x pour lesquelles la courbe de f et au-dessus de celle de g et réciproquement.


### EXERCICE 1.14.


Mêmes questions que l'exercice précedent avec  $f(x) = x^2$  et g(x) = x.

David ROBERT 9

FIGURE 1.2: Paraboles de l'exercice 1.12







### 1.5.5 Problèmes

### PROBLÈME 1.1.

Une entreprise produit de la farine de blé.

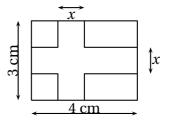
On note q le nombre de tonnes de farine fabriquée avec 0 < q < 80.

La tonne est vendue 120 € et le coût de fabrication de q tonnes de farine est donné, en €, par  $C(q) = 2q^2 + 10q + 900$ .

- 1. Déterminer la quantité de farine à produire pour que la production soit rentable.
- 2. Déterminer la production correspondant au bénéfice maximal et le montant de ce bénéfice.

### PROBLÈME 1.2.

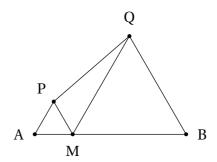
Trouver deux nombres dont la somme est égale à 57 et le produit égal à 540.


### PROBLÈME 1.3.

Une zone de baignade rectangulaire est délimitée par une corde (agrémentée de bouées) de longueur 50 m. Quelles doivent être les dimensions de la zone pour que la surface soit maximale?



### PROBLÈME 1.4.


Quelle largeur doit-on donner à la croix pour que son aire soit égale à l'aire restante du drapeau?



### PROBLÈME 1.5.

A et B sont deux points du plan tels que AB = 1. M est un point du segment [AB]. On construit dans le même demi-plan les points P et Q tels que AMP et MBQ sont des triangles équilatéraux.

- 1. Déterminer la position de *M* qui rend maximale l'aire du triangle *MPQ*.
- 2. Expliquer pourquoi cette position rend minimale l'aire du quadrilatère *ABQP*.

