Chapitre 6

Polynômes de degré trois

Sommaire

6.1	Cas général	9
6.2	Quelques cas particuliers	0
	6.2.1 $f: x \mapsto ax^3 \ (a \neq 0, b = c = d = 0) \dots$ 40	0
	6.2.2 $f: x \mapsto ax^3 + d \ (a \neq 0, b = c = 0) \dots $	0
	6.2.3 $f: x \mapsto a(x-x_1)(x-x_2)(x-x_3)$	0
6.3	Exercices	l

6.1 Cas général

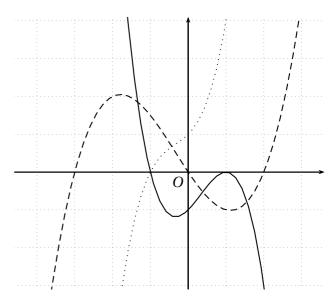
Définition 6.1. On appelle polynôme de degré trois toute expression pouvant s'écrire sous la forme $ax^3 + bx^2 + cx + d$ où $a \ne 0$.

Propriété 6.1. La courbe représentative d'une fonction polynôme de degré trois coupe l'axe des abscisses au moins une fois et au plus trois fois.

Exemples.

- $2x^3+5x^2-3x+4$ est un polynôme de degré trois avec a = 2, b = 5, c = -3 et d = 4
- $-x^3+2x+7$ est un polynôme de degré trois avec a=-1, b=0, c=2 et d=7
- $-3x^3 + 4$ est un polynôme de degré trois avec a = -3, b = 0, c = 0 et d = 4
- x^3 est un polynôme de degré trois avec a = 1, b = 0, c = 0 et d = 0

On l'admettra.



6.2 Quelques cas particuliers

6.2.1
$$f: x \mapsto ax^3 \ (a \neq 0, b = c = d = 0)$$
 6.2.2 $f: x \mapsto ax^3 + d \ (a \neq 0, b = c = 0)$

Définition 6.2. La fonction $f: x \mapsto ax^3$ où $a \neq 0$ est une fonction polynôme de degré trois.

Définition 6.3. La fonction $f: x \mapsto ax^3 + d$ où $a \ne 0$ est une fonction polynôme de degré trois.

Propriété 6.4. La fonction $f: x \mapsto ax^3 + d$ où

Propriété 6.2. La fonction $f: x \mapsto ax^3$ où $a \ne 0$ est:

- $a \neq 0$ est:

 croissante si a > 0:
- $d\acute{e}croissante si a < 0$.

• *croissante si a* > 0;

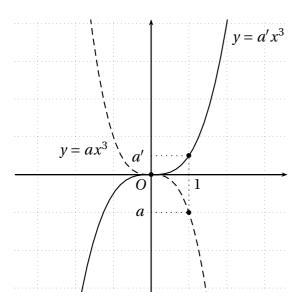
• décroissante si a < 0.

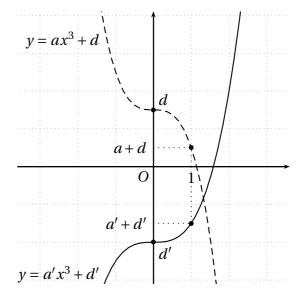
Propriété 6.3. La courbe de la fonction $f: x \mapsto ax^3$ où $a \neq 0$ passe par les points (0; 0) et (1; a).

Propriété 6.5. La courbe de la fonction $f: x \mapsto ax^3 + d$ où $a \neq 0$ passe par les points (0; d) et (1; a+d).

En effet, pour tout $a \ne 0$, $f(0) = a \times 0^3 = a \times 0 = 0$ donc la courbe de f passe par le point (0; 0) et $f(1) = a \times 1^3 = a \times 1 = a$ donc la courbe de f passe par le point (1; a)

En effet, pour tout $a \neq 0$, $f(0) = a \times 0^3 + d = a \times 0 + d = d$ donc la courbe de f passe par le point (0; d) et $f(1) = a \times 1^3 + d = a \times 1 + d = a + d$ donc la courbe de f passe par le point (1; a + d)





6.2.3
$$f: x \mapsto a(x-x_1)(x-x_2)(x-x_3)$$

Définition 6.4. La fonction $f: x \mapsto a(x-x_1)(x-x_2)(x-x_3)$ où $a \ne 0$ est une fonction polynôme de degré trois.

Il suffit de développer l'expression $a(x-x_1)(x-x_2)(x-x_3)$ pour obtenir sa forme ax^3+bx^2+cx+d .

Propriété 6.6. La fonction $f: x \mapsto a(x-x_1)(x-x_2)(x-x_3)$ où $a \neq 0$ admet comme racines x_1, x_2 et x_3 .

En effet, $f(x_1) = a(x_1 - x_1)(x_1 - x_2)(x_1 - x_3) = a \times 0 \times (x_1 - x_2)(x_1 - x_3) = 0$ et, de la même manière, $f(x_2) = 0$ et $f(x_3) = 0$.

Première technologique 6.3 Exercices

Si deux des racines sont égales, par exemple si $x_2 = x_3$, alors $f(x) = a(x - x_1)(x - x_2)(x - x_2) = a(x - x_1)(x - x_2)^2$ et on dit que x_2 est une racine double.

Si les trois racines sont égales, alors $f(x) = a(x - x_1)^3$ et x_1 est une racine triple.

Propriété 6.7. La courbe de la fonction $f: x \mapsto a(x-x_1)(x-x_2)(x-x_3)$ où $a \neq 0$ passe par les points $(x_1; 0), (x_2; 0)$ et $(x_3; 0)$.

Pour trouver l'expression complète de f(x), il suffit alors d'un 4^{e} point qui nous permet de trouver a.

Propriété 6.8. Le signe de fonction $f: x \mapsto a(x-x_1)(x-x_2)(x-x_3)$ où $a \neq 0$ s'obtient par un tableau de signe de la forme :

• Si les trois racines sont distinctes (pour l'exemple $x_2 < x_3 < x_1$):

х	$-\infty$		x_2		<i>x</i> ₃		x_1		$+\infty$
a		signe de a		signe de a		signe de a		signe de a	
$x-x_1$		_		_		_	0	+	
$x-x_2$		-	0	+		+		+	
$x-x_3$		-		_	0	+		+	
f(x)		signe de – a	0	signe de a	0	signe de – a	0	signe de a	

• Si x_2 racine double (pour l'exemple $x_2 < x_1$):

x	$-\infty$		x_2		x_1		$+\infty$
а	si	gne de a		signe de a		signe de a	
$x-x_1$		_		-	0	+	
$(x-x_2)^2$		+	0	+		+	
f(x)	sig	ne de – a	0	signe de – a	0	signe de a	

• $Si x_1$ racine triple:

x	$-\infty$		x_1		$+\infty$
a		signe de a		signe de a	
$(x-x_1)^3$		-	0	+	
f(x)		signe de – a	0	signe de a	

Il faut savoir refaire ces tableaux sans apprendre par cœur leur forme générale.

6.3 Exercices

Les exercices seront choisis dans le manuel.

David ROBERT 41