Un corrigé du devoir maison n°2

Le plan est muni d'un repère orthogonal $(O; \vec{\imath}, \vec{\jmath})$.

Soit \mathcal{P} la parabole d'équation $y = -x^2 + 8x - 13$, A le point de coordonnées (0; -4) et B le point de coordonnées (1; m) où m est un réel quelconque.

Partie A: Étude de la parabole.

1. Déterminer les coordonnées du sommet S de la parabole \mathcal{P} .

La parabole d'équation $y = ax^2 + bx + c$ admet comme sommet $S\left(\alpha;\beta\right) = \left(-\frac{b}{2a}; -\frac{\Delta}{4a}\right)$. On a donc $S\left(-\frac{8}{-2}; -\frac{64-52}{-4}\right) = (4;3)$.

2. Déterminer les coordonnées du point d'intersection de \mathcal{P} avec l'axe des ordonnées qu'on nommera C.

$$C(x;y) \in \mathcal{P} \cap (Oy) \Leftrightarrow \left\{ \begin{array}{l} y = -x^2 + 8x - 13 \\ x = 0 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} y = -0^2 + 8 \times 0 - 13 \\ x = 0 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} y = -13 \\ x = 0 \end{array} \right..$$

$$\operatorname{Donc} C(0; -13).$$

3. Déterminer les coordonnées des points d'intersection de $\mathscr P$ avec l'axe des abscisses qu'on nommera E et F.

$$M(x;y)\in\mathcal{P}\cap(Ox)\Leftrightarrow\left\{\begin{array}{ll}y=-x^2+8x-13\\y=0\end{array}\right.\Leftrightarrow\left\{\begin{array}{ll}-x^2+8x-13=0\\y=0\end{array}\right..$$

Cherchons les racines du trinôme : $\Delta = 12 > 0$ donc deux racines : $x_1 = \frac{-8 - \sqrt{12}}{-2} = 4 + \sqrt{3}$ et $x_2 = \frac{-8 + \sqrt{12}}{-2} = 4 - \sqrt{3}$.

Les points d'intersection de \mathscr{P} et de l'axe des abscisse sont donc $E(4+\sqrt{3};0)$ et $F(4-\sqrt{3};0)$.

4. Sur la figure fournie page 30, tracer \mathcal{P} , placer S, C, E et F.

Voir la figure.

Partie B: Étude de cas particuliers.

- 1. On pose m = 1.
 - (a) Déterminer l'équation réduite de la droite (AB) qu'on nommera \mathcal{D}_1 .

Comme $x_A \neq x_B$, (*AB*) admet une équation de la forme y = mx + p avec $m = \frac{y_B - y_A}{x_B - x_A} = \frac{m+4}{1-0} = m+4 = 1+4 = 5$ et $p = y_A - mx_A = -4 - 5 \times 0 = -4$. Ainsi $\mathcal{D}_1: y = 5x - 4$

(b) Déterminer si la droite \mathcal{D}_1 et la parabole \mathcal{P} ont des points d'intersection et, si oui, déterminer leurs coordonnées.

$$M(x; y) \in \mathcal{P} \cap \mathcal{D}_1 \Leftrightarrow \begin{cases} y = -x^2 + 8x - 13 \\ y = 5x - 4 \end{cases} \Leftrightarrow \begin{cases} y = -x^2 + 8x - 13 \\ -x^2 + 8x - 13 = 5x - 4 \end{cases} \Leftrightarrow \begin{cases} y = -x^2 + 8x - 13 \\ -x^2 + 8x - 13 = 5x - 4 \end{cases} \Leftrightarrow \begin{cases} y = -x^2 + 8x - 13 \\ 0 = x^2 - 8x + 5x - 4 + 13 \end{cases} \Leftrightarrow \begin{cases} y = -x^2 + 8x - 13 \\ x^2 - 3x + 9 = 0 \end{cases}$$

Cherchons les racines du trinôme : $\Delta = 9 - 36 = -27 < 0$ donc le trinôme n'a pas de racines, donc le système n'a pas de solution donc la droite \mathcal{D}_1 et la parabole \mathcal{P} n'ont d'intersection.

(c) Tracer \mathcal{D}_1 sur la figure, nommer et placer les éventuels points trouvés à la question précédente.

David ROBERT 27

Voir la figure.

- 2. On pose m = -6.
 - (a) Déterminer l'équation réduite de la droite (AB) qu'on nommera \mathcal{D}_2 .

Comme $x_A \neq x_B$, (AB) admet une équation de la forme y=mx+p avec $m=\frac{y_B-y_A}{x_B-x_A}=m+4=-6+4=-2$ et $p=y_A-mx_A=-4-(-2)\times 0=-4$. Ainsi $\mathcal{D}_2:y=-2x-4$

(b) Déterminer si la droite \mathcal{D}_2 et la parabole \mathcal{P} ont des points d'intersection et, si oui, déterminer leurs coordonnées.

$$M(x; y) \in \mathcal{P} \cap \mathcal{D}_2 \Leftrightarrow \begin{cases} y = -x^2 + 8x - 13 \\ y = -2x - 4 \end{cases} \Leftrightarrow \begin{cases} y = -x^2 + 8x - 13 \\ -x^2 + 8x - 13 = -2x - 4 \end{cases} \Leftrightarrow \begin{cases} y = -x^2 + 8x - 13 \\ -x^2 + 8x - 13 = -2x - 4 \end{cases} \Leftrightarrow \begin{cases} y = -x^2 + 8x - 13 \\ 0 = x^2 - 8x - 2x - 4 + 13 \end{cases} \Leftrightarrow \begin{cases} y = -x^2 + 8x - 13 \\ x^2 - 10x + 9 = 0 \end{cases}$$

Cherchons les racines du trinôme : $\Delta = 100 - 36 = 64 > 0$ donc le trinôme a deux racines distinctes : $x_1 = \frac{10 - \sqrt{64}}{2} = 1$ et $x_2 = \frac{10 + \sqrt{64}}{2} = 9$, donc le système a deux couples solution $(x_1; y_1) = (1; -1^2 + 8 - 13) = (1, -6)$ et $(x_2; y_2) = (9; -9^2 + 72 - 13) = (9, -22)$ donc la droite \mathcal{D}_1 et la parabole \mathcal{P} ont deux intersections : les points H(1, -6) et I(9, -22).

(c) Tracer \mathcal{D}_2 sur la figure, nommer et placer les éventuels points trouvés à la question précédente.

Voir la figure.

Partie C: Cas général.

On cherche, dans cette partie, selon les valeurs de m, le nombre d'intersections entre la droite (AB) et la parabole \mathcal{P} .

1. Montrer que l'équation réduite de la droite (AB) est y = (m+4)x - 4.

Comme $x_A \neq x_B$, (*AB*) admet une équation de la forme y = mx + p avec $m = \frac{y_B - y_A}{x_B - x_A} = \frac{m+4}{1-0} = m+4$ et $p = y_A - mx_A = -4 - (m+4) \times 0 = -4$. Ainsi (*AB*): y = (m+4)x - 4

2. Montrer que $M(x; y) \in (AB) \cap \mathcal{P} \Leftrightarrow \begin{cases} y = -x^2 + 8x - 13 \\ x^2 + (m-4)x + 9 = 0 \end{cases}$

$$M(x; y) \in \mathcal{P} \cap (AB) \Leftrightarrow \begin{cases} y = -x^2 + 8x - 13 \\ y = (m+4)x - 4 \end{cases} \Leftrightarrow \begin{cases} y = -x^2 + 8x - 13 \\ -x^2 + 8x - 13 = (m+4)x - 4 \end{cases} \Leftrightarrow \begin{cases} y = -x^2 + 8x - 13 \\ 0 = x^2 - 8x + (m+4)x - 4 + 13 \end{cases} \Leftrightarrow \begin{cases} y = -x^2 + 8x - 13 \\ x^2 + (m-4)x + 9 = 0 \end{cases}$$

3. Justifier que le nombre de solutions de ce système dépend du signe de $m^2 - 8m - 20$.

Le nombre de solutions de ce système dépend du nombre de racines du trinôme, luimême dépendant du signe de $\Delta = (m-4)^2 - 4 \times 1 \times 9 = m^2 - 8m + 16 - 36 = m^2 - 8m - 20$. Le nombre de solutions de ce système dépend bien du signe de $m^2 - 8m - 20$.

4. Étudier le signe de $m^2 - 8m - 20$ selon les valeurs de m.

 $m^2 - 8m - 20$ est un trinôme de la forme $am^2 + bm + c$ avec a = 1, b = -8 et c = -20. Il est donc du signe de a, c'est-à-dire positif, sauf entre ses éventuelles racines.

Son discriminant est $\Delta' = b^2 - 4ac = (-8)^2 - 4 \times 1 \times (-20) = 144 > 0$ donc il admet deux racines : $m_1 = \frac{-b - \sqrt{\Delta'}}{2a} = \frac{8 - 12}{2} = -2$ et $m_2 = \frac{-b + \sqrt{\Delta'}}{2a} = \frac{8 + 12}{2} = 10$. On a donc le signe de $m^2 - 8m - 20$ résumé dans le tableau suivant :

m	$-\infty$		-2		10		+∞
$m^2 - 8m - 20$		+	0	-	0	+	

5. En déduire le nombre d'intersections entre la droite (AB) et la parabole \mathcal{P} selon les valeurs de m.

Le signe de $\Delta' = m^2 - 8m - 20$ nous donne le nombre de racines du trinôme et donc le nombre de d'intersections entre \mathcal{P} et (AB): si $\Delta' > 0$, il y a deux points d'intersection, si $\Delta' = 0$, un seul point d'intersection, et, enfin, si $\Delta' < 0$ il n'y en a pas.

Ce qui est résumé dans le tableau ci-dessous :

m	$-\infty$		-2		10		+∞
Nombre d'intersections		2	1	0	1	2	

- 6. Il existe deux valeurs de m pour lesquelles (AB) et \mathcal{P} ont un unique point d'intersection.
 - (a) Déterminer dans chacun des deux cas les coordonnées de ce point d'intersection.

$$m = -2$$
: $M(x; y) \in \mathcal{P} \cap (AB) \Leftrightarrow \begin{cases} y = -x^2 + 8x - 13 \\ x^2 + (m-4)x + 9 = 0 \end{cases} \Leftrightarrow \begin{cases} y = -x^2 + 8x - 13 \\ x^2 - 6x + 9 = 0 \end{cases}$

Cherchons les racines du trinôme : $\Delta = 36 - 36 = 0$, comme prévu, donc le trinôme a une racine double : $x_0 = -\frac{-6}{2} = 3$ et l'intersection de \mathcal{P} et de (AB)est un unique point *G* de coordonnées $(x_0; y_0) = (3; -3^2 + 8 \times 3 - 13) = (3; 2)$.

$$m = 10$$
: $M(x; y) \in \mathcal{P} \cap (AB) \Leftrightarrow \begin{cases} y = -x^2 + 8x - 13 \\ x^2 + (m-4)x + 9 = 0 \end{cases} \Leftrightarrow \begin{cases} y = -x^2 + 8x - 13 \\ x^2 + 6x + 9 = 0 \end{cases}$

Cherchons les racines du trinôme : $\Delta = 36 - 36 = 0$, comme prévu, donc le trinôme a une racine double : $x_0 = -\frac{6}{2} = 3$ et l'intersection de \mathscr{P} et de (AB)est un unique point *J* de coordonnées $(x_0; y_0) = (-3; -(-3)^2 + 8 \times (-3) - 13) =$ (-3; -46).

(b) On peut placer un de ces deux points, qu'on nommera G, sur la figure fournie. Le faire et tracer la droite (AB) correspondante, qu'on nommera \mathcal{D}_3 .

Voir la figure.

La droite (AB), non demandée, a aussi été tracée en pointillés.

29 David ROBERT

