Devoir maison n°2

Droite, parabole et paramètre

À rendre pour le vendredi 21 octobre.

Ce devoir doit être fait à 3 (une seule copie par groupe d'élèves); chaque élève doit rédiger une partie.

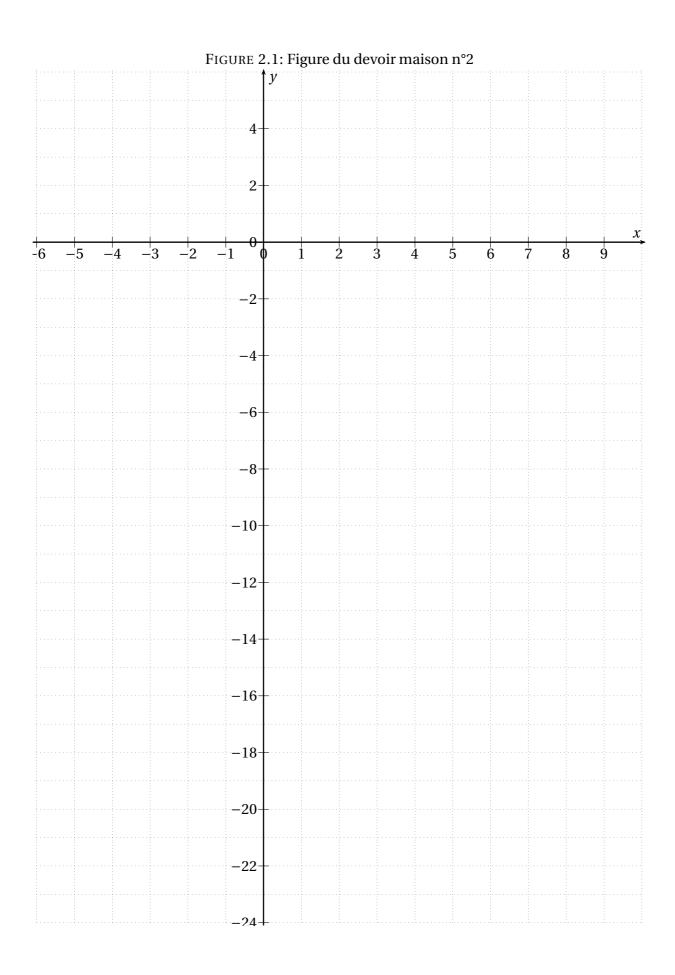
Le plan est muni d'un repère orthogonal $(0; \vec{\imath}, \vec{\jmath})$.

Soit \mathcal{P} la parabole d'équation $y = -x^2 + 8x - 13$, A le point de coordonnées (0; -4) et B le point de coordonnées (1; m) où m est un réel quelconque.

Partie A: Étude de la parabole.

- 1. Déterminer les coordonnées du sommet S de la parabole \mathscr{P} .
- 2. Déterminer les coordonnées du point d'intersection de \mathcal{P} avec l'axe des ordonnées qu'on nommera C.
- 3. Déterminer les coordonnées des points d'intersection de \mathscr{P} avec l'axe des abscisses qu'on nommera E et F. On attend les valeurs exactes.
- 4. Sur la figure fournie page suivante, tracer \mathcal{P} , placer S, C, E et F.

Partie B: Étude de cas particuliers.


- 1. On pose m = 1.
 - (a) Déterminer l'équation réduite de la droite (AB) qu'on nommera \mathcal{D}_1 .
 - (b) Déterminer si la droite \mathcal{D}_1 et la parabole \mathcal{P} ont des points d'intersection et, si oui, déterminer leurs coordonnées.
 - (c) Tracer \mathcal{D}_1 sur la figure, nommer et placer les éventuels points trouvés à la question précédente.
- 2. On pose m = -6.
 - (a) Déterminer l'équation réduite de la droite (AB) qu'on nommera \mathcal{D}_2 .
 - (b) Déterminer si la droite \mathcal{D}_2 et la parabole \mathcal{P} ont des points d'intersection et, si oui, déterminer leurs coordonnées.
 - (c) Tracer \mathcal{D}_2 sur la figure, nommer et placer les éventuels points trouvés à la question précédente.

Partie C: Cas général.

On cherche, dans cette partie, selon les valeurs de m, le nombre d'intersections entre la droite (AB) et la parabole \mathcal{P} .

- 1. Montrer que l'équation réduite de la droite (AB) est y = (m+4)x-4.
- 2. Montrer que $M(x; y) \in (AB) \cap \mathcal{P} \Leftrightarrow \begin{cases} y = -x^2 + 8x 13 \\ x^2 + (m-4)x + 9 = 0 \end{cases}$
- 3. Justifier que le nombre de solutions de ce système dépend du signe de $m^2 8m 20$.
- 4. Étudier le signe de $m^2 8m 20$ selon les valeurs de m.
- 5. En déduire le nombre d'intersections entre la droite (AB) et la parabole $\mathcal P$ selon les valeurs de m.
- 6. Il existe deux valeurs de m pour lesquelles (AB) et \mathcal{P} ont un unique point d'intersection.
 - (a) Déterminer dans chacun des deux cas les coordonnées de ce point d'intersection.
 - (b) On peut placer un de ces deux points, qu'on nommera G, sur la figure fournie. Le faire et tracer la droite (AB) correspondante, qu'on nommera \mathcal{D}_3 .

David ROBERT 21

