Devoir maison n°2: Un corrigé

Le plan est muni d'un repère orthonormé.

Soit A(1; 4), B(10; -1) et C(1; -10).

On nomme A', B' et C' les milieux respectifs de [BC], [AC] et [AB].

On nomme H_A , H_B et H_C les pieds des hauteurs du traingle ABC issues, respectivement, de A, B et C.

On appelle:

 \mathscr{C} : Le cercle circonscrit au triangle ABC;

 Ω : Le centre de \mathscr{C} (c'est-à-dire le point de concours des médiatrices des ctés du triangle);

H: L'orthocentre du triangle ABC (c'est-à-dire le point de concours des hauteurs du triangle);

- *G*: Le centre de gravité du triangle *ABC* (c'est-à-dire le point de concours des médianes du triangle).
 - 1. Déterminer les coordonnées de Ω et une équation cartésienne de \mathscr{C} .

 Ω est le point de concours des médiatrices des côtés du triangle, c'est-à-dire des droites perpendiculaires aux côtés et passant par les milieux de ces côtés.

Cherchons, pour commencer, les coordonnées de ces milieux.

Le milieu I d'un segment [AB] a pour coordonnées $I\left(\frac{x_A+x_B}{2}; \frac{y_A+y_B}{2}\right)$ donc $A'\left(\frac{x_B+x_C}{2}; \frac{y_B+y_C}{2}\right) = \left(\frac{11}{2}; -\frac{11}{2}\right)$.

On trouve de la même manière B'(1; -3) et $C'(\frac{11}{2}; \frac{3}{2})$

$$A'\left(\frac{11}{2}; -\frac{11}{2}\right) \qquad \qquad B'(1; -3) \qquad \qquad C'\left(\frac{11}{2}; \frac{3}{2}\right)$$

Cherchons à présent une équation cartésienne pour chacune des médiatrices.

Soit $\mathcal{D}_{A'}$ la médiatrice passant par A'.

Cette médiatrice admet comme vecteur normal le vecteur $\overrightarrow{BC}(x_C - x_B; y_c - y_B) = (-9; -9)$.

 $M(x; y) \in \mathcal{D}_{A'} \Leftrightarrow \overrightarrow{A'M}.\overrightarrow{BC} = 0 \Leftrightarrow \left(x - \frac{11}{2}\right) \times (-9) + \left(y + \frac{11}{2}\right) \times (-9) = 0 \Leftrightarrow -9x - 9y = 0 \Leftrightarrow x + y = 0.$ Une équation cartésienne de $\mathcal{D}_{A'}$ est donc x + y = 0.

On trouve de la même manière qu'une équation cartésienne de la médiatrice $\mathcal{D}_{B'}$, de vecteur normal $\overrightarrow{AC}(0; -14)$, est y = -3.

On trouve de la même manière qu'une équation cartésienne de la médiatrice $\mathcal{D}_{C'}$, de vecteur normal \overrightarrow{AB} (9; -5), est 9x - 5y - 42 = 0.

$$\mathcal{D}_{A'}: x + y = 0 \qquad \qquad \mathcal{D}_{B'}: y = -3 \qquad \qquad \mathcal{D}_{C'}: 9x - 5y - 42 = 0$$

 Ω est le point de concours des 3 médiatrices, donc il nous suffit de déterminer l'intersection de deux de ces médiatrices.

On choisira les deux équations les plus simples :

$$\Omega(x; y) \in \mathcal{D}_{A'} \cap \mathcal{D}_{B'} \Leftrightarrow \begin{cases} x + y = 0 \\ y = -3 \end{cases} \Leftrightarrow \begin{cases} x = 3 \\ y = -3 \end{cases} \operatorname{donc} \Omega(3; -3).$$

$$\Omega(3; -3)$$

Remarque. Seules les équations de deux médiatrices étaient nécessaires pour trouver les coordonnées de Ω ; le seul avantage d'avoir les trois est de pouvoir choisir les deux équations les plus simples pour que la résolution du système soit la plus facile possible.

Enfin \mathscr{C} est le cercle de centre Ω et, par exemple, passant par A.

Donc
$$\mathscr{C}: (x - x_{\Omega})^2 + (y - y_{\Omega})^2 = r^2 \Leftrightarrow (x - 3)^2 + (y + 3)^2 = r^2$$
.

Et, comme
$$A \in \mathcal{C}$$
, $(x_A - 3)^2 + (y_A + 3)^2 = r^2$ donc $r^2 = (1 - 3)^2 + (4 + 3)^2 = 53$.

$$\mathscr{C}: (x-3)^2 + (y+3)^2 = 53$$

2. Déterminer les coordonnées de H.

H est le point de concours des hauteurs du triangle, c'est-à-dire des droites perpendiculaires aux côtés et passant par le sommet opposé.

Cherchons une équation cartésienne pour chacune des hauteurs.

Soit Δ_A , Δ_B et Δ_C les hauteurs issues, respectivement, de A, de B et de C.

 Δ_A admet comme vecteur normal le vecteur $\overrightarrow{BC}(-9;-9)$ et passe par A donc $M(x;y) \in$ $\Delta_A \Leftrightarrow \overrightarrow{AM}.\overrightarrow{BC} = 0 \Leftrightarrow -9x - 9y + 45 = 0 \Leftrightarrow x + y - 5 = 0$ qui est donc une équation cartésienne de Δ_A .

On trouve de la même manière que Δ_B : $-14y-14=0 \Leftrightarrow y=-1$ et que Δ_C : -9x+5y+59=0.

$$\Delta_A: x + y - 5 = 0$$
 $\Delta_B: y = -1$ $\Delta_C: -9x + 5y + 59 = 0$

H est le point de concours des 3 hauteurs, donc il nous suffit de déterminer l'intersection de deux de ces hauteurs.

On choisira les deux équations les plus simples :

On choisira les deux equations les plus simples :
$$H(x;y) \in \Delta_A \cap \Delta_B \Leftrightarrow \left\{ \begin{array}{l} x+y-5=0 \\ y=-1 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} x=6 \\ y=-1 \end{array} \right. donc \ H(6;-1).$$

$$H(6;-1)$$

Remarque. Seules les équations de deux hauteurs étaient nécessaires pour trouver les coordonnées de H; le seul avantage d'avoir les trois est de pouvoir choisir les deux équations les plus simples pour que la résolution du système soit la plus facile possible.

3. Déterminer les coordonnées de *G*.

G est le point de concours des médianes du triangle, c'est-à-dire des droites passant par le milieu d'un côté et passant par le sommet opposé.

Cherchons une équation cartésienne pour chacune de ces médianes.

(AA') admet $\overrightarrow{AA'}(\frac{9}{2}; -\frac{19}{2})$ comme vecteur directeur, donc aussi le vecteur $\overrightarrow{v} = 2\overrightarrow{AA'}(9; -19)$.

$$M(x; y) \in (AA') \Leftrightarrow \det\left(\overrightarrow{AM}; \overrightarrow{v}\right) = 0 \Leftrightarrow \begin{vmatrix} x-1 & 9 \\ y-4 & -19 \end{vmatrix} = 0 \Leftrightarrow -19(x-1) - 9(y-4) = 0 \Leftrightarrow -19x - 9y + 55 = 0 \Leftrightarrow 19x + 9y - 55 = 0.$$

On trouve de la même manière que (BB'): -2x+9y+29=0 et que (CC'): 23x-9x-113=0.

$$(AA'): 19x + 9y - 55 = 0$$
 $(BB'): -2x + 9y + 29 = 0$ $(CC'): 23x - 9x - 113 = 0$

G est le point de concours des 3 médianes, donc il nous suffit de déterminer l'intersection de deux de ces médianes.

Aucune des trois équations n'est vraiment simple mais celle de (CC') a des coefficients plus grands, aussi évitons là:

$$G(x; y) \in (AA') \cap (BB') \Leftrightarrow \begin{cases} 19x + 9y - 55 = 0 \\ -2x + 9y + 29 = 0 \end{cases}$$

En soustrayant les deux lignes, il vient $21x - 84 = 0 \Leftrightarrow x = 4$.

En remplaçant x par 4 dans la ligne 2, il vient $9y + 21 = 0 \Leftrightarrow y = -\frac{7}{3}$. Donc $G\left(4; -\frac{7}{3}\right)$. $G\left(4; -\frac{7}{3}\right)$

$$G\left(4;-\frac{7}{3}\right)$$

Remarque. Seules les équations de deux médianes étaient nécessaires pour trouver les coordonnées de G.

4. Montrer que les points H, G et Ω sont alignés.

Déterminons si les vecteurs $\overrightarrow{\Omega H}$ et \overrightarrow{HG} sont colinéaires.

 $\det\left(\overrightarrow{\Omega H}; \overrightarrow{HG}\right) = \begin{vmatrix} 3 & -2 \\ 2 & -\frac{4}{3} \end{vmatrix} = -4 + 4 = 0 \text{ donc ces vecteurs sont colinéaires et les points } H, G$

Remarque. On aurait pu remplacer l'un des deux vecteurs par le vecteur $\overrightarrow{\Omega G}(1; \frac{2}{3})$.

Un schéma n'était pas indispensable mais il permet de vérifier au fur et à mesure les résultats obtenus, d'autant plus s'il est réalisé avec Geogebra qui affiche des équations cartésiennes pour chacun des éléments tracés!

