Chapitre 3

Polynômes de degré 2

Sommaire

3.1	Activités
3.2	Bilan et compléments
	3.2.1 Cas général
	3.2.2 Cas particulier: $f(x) = ax^2$ ($b = 0$ et $c = 0$)
	3.2.3 Cas particulier: $f(x) = ax^2 + c$ ($b = 0$)
	3.2.4 Cas particulier: $f(x) = a(x - x_1)(x - x_2)$
3.3	Exercices

3.1 Activités

Les activités seront choisies dans le manuel.

3.2 Bilan et compléments

3.2.1 Cas général

Définition

Définition 3.1. On appelle *fonction polynôme de degré 2* ou *fonction du second degré* ou *fonction trinôme* toute fonction f pouvant s'écrire sous la forme $f(x) = ax^2 + bx + c$ avec $a \neq 0$.

Exemples 3.1. Les fonctions suivantes sont toutes des fonctions trinômes :

- $f(x) = 2x^2 3x + 1 = ax^2 + bx + c$ avec a = 2, b = -3 et c = 1;
- $g(x) = 3x^2 + 2 = ax^2 + bx + c$ avec a = 3, b = 0 et c = 2;
- $h(x) = -x^2 + 2x = ax^2 + bx + c$ avec a = -1, b = 2 et c = 0;
- $i(x) = 4x^2 = ax^2 + bx + c$ avec a = 4, b = 0 et c = 0.

Tableau de variations

Propriété 3.1. Une fonction trinôme a pour tableau des variations l'un des tableaux suivants :

• Si a > 0 alors

X	$-\infty$	x_0	$+\infty$
$f(x) = ax^2 + bx + c$		$y_0 = f(x_0)$	

• $Si \ a < 0 \ alors$

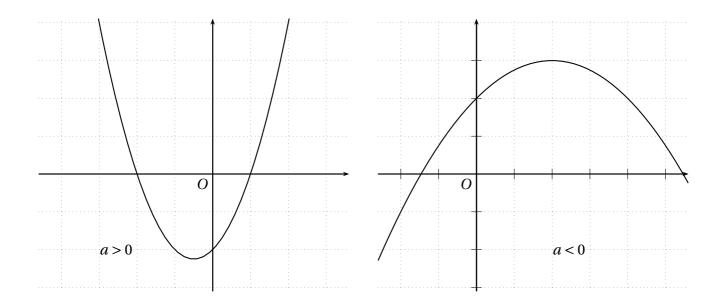
x	$-\infty$	x_0	+∞
$f(x) = ax^2 + bx + c$,	$y_0 = f(x_0)$	

On l'admettra

Courbe représentative

Propriété 3.2. La courbe représentative d'une fonction trinôme est une parabole avec un axe de symétrie parallèle à l'axe des abscisses, donc d'équation $x = x_0$, et un sommet $S(x_0; y_0)$ situé sur cet axe de symétrie.

On l'admettra.



3.2.2 Cas particulier: $f(x) = ax^2$ (b = 0 et c = 0)

Comme $f(x) = ax^2$ et $f(-x) = a(-x)^2 = ax^2$, l'axe de symétrie est l'axe des ordonnées. Le sommet S, situé sur l'axe de symétrie, a donc pour abscisse 0 et pour ordonnée $f(0) = a \times 0^2 = 0$. Par ailleurs $f(1) = a \times 1^2 = a$ donc la courbe de f passe par le point (1; a). On a ainsi:

Tableau de variations

Propriété 3.3. Une fonction trinôme du type $f(x) = ax^2$ a pour tableau des variations l'un des tableaux suivants :

• Si a > 0 alors

x	$-\infty$	0	+∞
$f(x) = ax^2$		0 = f(0)	

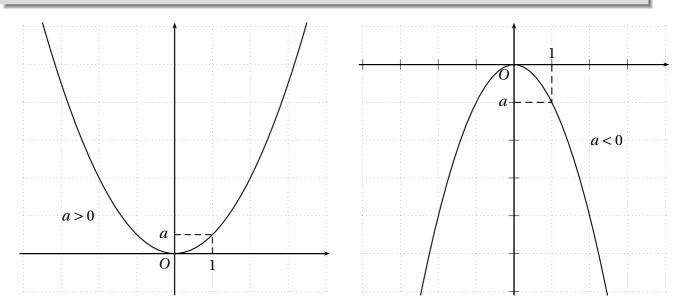
• $Si \ a < 0 \ alors$

x	$-\infty$	0	+∞
$f(x) = ax^2$,	0 = f(0)	0))

Courbe représentative

Propriété 3.4. La courbe représentative d'une fonction trinôme du type $f(x) = ax^2$ est une parabole dont l'axe de symétrie est l'axe des ordonnée, donc d'équation x = 0, et un sommet S(0; 0) situé sur cet axe de symétrie.

La courbe passe par le point (1; a).



Signe de f(x) selon les valeurs de x

Comme $f(x) = ax^2$ et que $x^2 \ge 0$ alors f(x) est du signe de a et s'annule en x = 0. D'où :

Propriété 3.5. $f(x) = ax^2$ est du signe de a et s'annule en x = 0:

x	$-\infty$		0		+∞
$f(x) = ax^2$	s	igne de a	0	signe de a	

David ROBERT 15

3.2.3 Cas particulier: $f(x) = ax^2 + c$ (b = 0)

Comme $f(x) = ax^2 + c$ et $f(-x) = a(-x)^2 + c = ax^2 + c$, l'axe de symétrie est l'axe des ordonnées. Le sommet S, situé sur l'axe de symétrie, a donc pour abscisse 0 et pour ordonnée $f(0) = a \times 0^2 + c = c$. Par ailleurs $f(1) = a \times 1^2 + c = a + c$ donc la courbe de f passe par le point (1; a + c). On a ainsi:

Tableau de variations

Propriété 3.6. Une fonction trinôme du type $f(x) = ax^2 + c$ a pour tableau des variations l'un des tableaux suivants :

• Si a > 0 alors

x	$-\infty$	0	+∞
$f(x) = ax^2 + c$		c = f(0)	

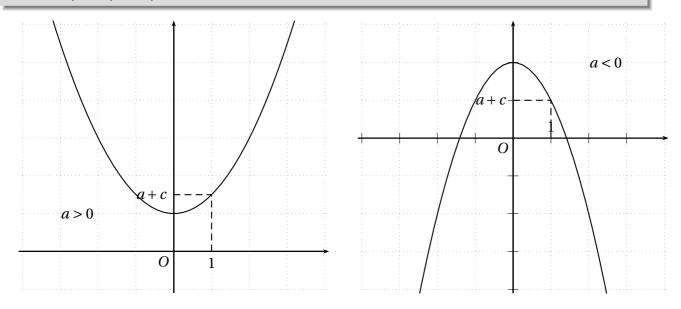
• $Si \ a < 0 \ alors$

x	$-\infty$	0	+∞
$f(x) = ax^2 + c$	/	c = f(0)	

Courbe représentative

Propriété 3.7. La courbe représentative d'une fonction trinôme du type $f(x) = ax^2 + c$ est une parabole dont l'axe de symétrie est l'axe des ordonnée, donc d'équation x = 0, et un sommet S(0; c) situé sur cet axe de symétrie.

La courbe passe par le point (1; a+c).



3.2.4 Cas particulier: $f(x) = a(x - x_1)(x - x_2)$

Ce type de fonction est bien une fonction trinôme car $f(x) = a(x^2 - x_1 \times x - x_2 \times x + x_1 \times x_2) = ax^2 - (x_1 + x_2)x + x_1x_2 = ax^2 + bx + c$ avec $b = -(x_1 + x_2)$ et $c = x_1x_2$.

 $f(x_1) = a(x_1 - x_1)(x_1 - x_2) = 0$ et $f(x_2) = a(x_2 - x_1)(x_2 - x_2) = 0$ donc la courbe passe par les points $(x_1; 0)$ et $(x_2; 0)$. x_1 et x_2 sont appelées les *racines du trinôme*.

On admettra que l'axe de symétrie de la parabole est l'axe parallèles à l'axe des ordonnées situé à égale distance de x_1 et x_2 donc d'équation $x = \frac{x_1 + x_2}{2}$. Le sommet S, situé sur l'axe de symétrie, a donc pour abscisse $x_0 = \frac{x_1 + x_2}{2}$ et pour ordonnée $f(x_0)$. On a ainsi :

Tableau de variations

Propriété 3.8. Une fonction trinôme du type $f(x) = a(x - x_1)(x - x_2)$ a pour tableau des variations l'un des tableaux suivants :

• Si a > 0 alors

x	$-\infty \qquad x_0 = \frac{x_1 + x_2}{2}$	+∞
$f(x) = a(x - x_1)(x - x_2)$	$y_0 = f(x_0)$	

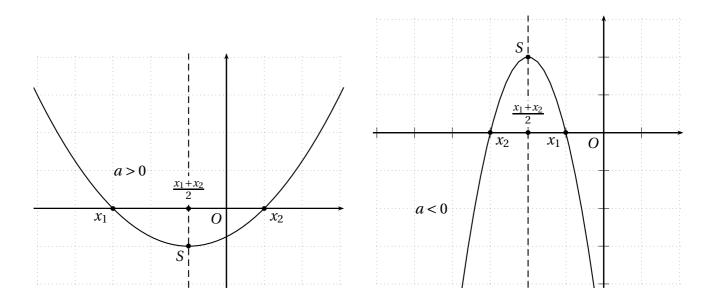
• $Si\ a < 0\ alors$

x	$-\infty \qquad x_0 = \frac{x_1 + x_2}{2} \qquad +$	∞
$f(x) = a(x - x_1)(x - x_2)$	$y_0 = f(x_0)$	

Courbe représentative

Propriété 3.9. La courbe représentative d'une fonction trinôme du type $f(x) = a(x - x_1)(x - x_2)$ est une parabole dont l'axe de symétrie est d'équation $x = \frac{x_1 + x_2}{2}$, et un sommet $S\left(\frac{x_1 + x_2}{2}; f\left(\frac{x_1 + x_2}{2}\right)\right)$ situé sur cet axe de symétrie.

La courbe passe par les points $(x_1; 0)$ et $(x_2; 0)$.



3.3 Exercices Première technologique

Signe de f(x) selon les valeurs de x

On admettra que:

Propriété 3.10. $f(x) = a(x - x_1)(x - x_2)$ est du signe de a sauf entre x_1 et x_2 et s'annule en $x = x_1$ et en $x = x_2$ soit, en supposant que $x_1 < x_2$:

x	$-\infty$	x_1		x_2		$+\infty$
$f(x) = a(x - x_1)(x - x_2)$	signe de a	0	signe opposé de a	0	signe de a	

3.3 Exercices

Les exercices seront choisis dans le manuel par le professeur.