Chapitre 9

Placements à intérêts simples ou composés

Sommaire

9.1	Intéré	ets simples	
	9.1.1	Valeur acquise par un capital placé	
	9.1.2	Calcul d'un taux proportionnel	
9.2	Intérêts composés		
	9.2.1	Valeur acquise par un capital placé	
	9.2.2	Valeur actuelle d'un capital placé	
	9.2.3	Taux équivalent	
9.3	Exerc	ices	

9.1 Intérêts simples

Dans le cas de certains placements à court terme (inférieur à un an) ou pour des emprunts d'État, on pratique des intérêts simples, proportionnels à la durée du placement.

9.1.1 Valeur acquise par un capital placé

Définition 9.1. Placer un capital C_0 avec *intérêts simples* au taux t *sur une période* (un jour, un mois, un trimestre, etc.), signifie que, *pour chaque période*, l'intérêt perçu est le même et égal à $C_0 \times t$.

Propriété 9.1. Soit t le taux d'intérêts simples sur une période (un jour, un mois, un trimestre, etc.).

- La valeur acquise C_n du capital pour le placement d'un capital C_0 sur une durée de n périodes est $C_n = C_0(1 + t \times n)$.
- L'intérêt acquis I_n par ce capital est $I_n = C_n C_0 = C_0 \times t \times n$.

Remarque. Les capitaux disponibles successifs au bout d'une période, de deux périodes, ..., de n périodes : C_1 , C_2 , ..., C_n sont les termes successifs d'une suite arithmétique de premier terme C_0 et de raison $C_0 \times t$.

Exemple 9.1. On place un capital de 2 500 € à intérêts simples au taux mensuel de 0,5 %. Calculer le montant du capital et l'intérêt perçu au bout d'un an.

9.2 Intérêts composés

BTS Comptabilité Gestion

9.1.2 Calcul d'un taux proportionnel

Propriété 9.2. Placer une somme aux taux annuel t_a , revient à placer cette somme à intérêts simples au taux mensuel proportionnel $t_m = \frac{t_a}{12}$.

Exemple 9.2. On place 1 500 € à intérêts simples pour une période de 2 mois au taux annuel de 3 %. Calculer l'intérêt perçu au bout de 2 mois si l'on applique un taux proportionnel.

9.2 Intérêts composés

Dans le cas de placements à long terme, on pratique des intérêts composés.

9.2.1 Valeur acquise par un capital placé

Définition 9.2. Placer un capital C_0 avec intérêts composés au taux t sur une période (un jour, un mois, un trimestre, etc.), signifie que les intérêts d'une période s'ajoutent au capital et que, la période suivante, ils rapportent eux aussi des intérêts.

Propriété 9.3. Soit t le taux d'intérêts composés sur une période (un jour, un mois, un trimestre, etc.).

- La valeur acquise C_n du capital pour le placement d'un capital C_0 sur une durée de n périodes est $C_n = C_0(1+t)^n$.
- L'intérêt acquis par ce capital est $I_n = C_n C_0 = C_0[(1+t)^n 1]$.

Remarque. Les capitaux disponibles successifs au bout d'une période, de deux périodes, ..., de n périodes : C_1 , C_2 , ..., C_n sont les termes successifs d'une suite géométrique de premier terme C_0 et de raison 1 + t.

Exemple 9.3. On place 250 € à intérêts composés au taux annuel de 3,5 %. Calculer le montant du capital et l'intérêt perçu au bout de 10 ans.

9.2.2 Valeur actuelle d'un capital placé

Définition 9.3. La valeur actuelle d'un capital C_n , obtenu après n périodes, « au taux d'actualisation t », est le capital C_0 qu'il faut placer au taux t avec intérêts composés, pendant n périodes, pour obtenir une valeur acquise C_n du capital.

Propriété 9.4. La valeur actuelle C_0 d'un capital C_n obtenu après n périodes, « au taux d'actualisation t », est $C_0 = C_n(1+t)^{-n}$.

Exemple 9.4. Déterminer la valeur actuelle C_0 d'un capital placé à intérêts composés aujourd'hui au taux annuel de 1,25 % qui aura la valeur acquise de 12 000 \in dans 5 ans.

BTS Comptabilité Gestion 9.3 Exercices

9.2.3 Taux équivalent

Propriété 9.5. Dans le cas d'un intérêt mensuel t_m , le taux d'intérêt correspondant à un placement annuel est le taux équivalent t_a .

De la même façon, à un taux annuel t_a correspond un taux mensuel t_m équivalent. Le passage de l'un à l'autre s'effectue à l'aide de la formule : $1 + t_a = (1 + t_m)^{12}$.

Exemple 9.5. On place un capital à intérêts composés.

- 1. Calculer le taux annuel équivalent à un taux mensuel de 0,3 %.
- 2. Calculer le taux mensuel équivalent à un taux annuel de 8 %.

9.3 Exercices

EXERCICE 9.1.

On place un capital $C_0 = 150\,000 \in$ en emprunts d'État à 1,18 % annuel par intérêts simples. On note C_n le capital obtenu ou « valeur acquise », au bout de n années.

- 1. Calculer C_1 , C_2 , C_3 .
- 2. (a) Donner pour tout entier naturel n, l'expression de C_{n+1} en fonction de C_n .
 - (b) En déduire que la suite (C_n) sont les termes consécutifs d'une suite arithmétique de premier terme C_0 et dont on précisera la raison.
 - (c) Donner l'expression de C_n en fonction de n.
 - (d) Au bout de combien d'années le capital initial aura-t-il augmenté de 20 %?

EXERCICE 9.2.

On place un capital $C_0 = 2000 \in$ en « obligations » à 3,41 % par an, avec intérêts simples, pendant 10 ans. Calculer le capital disponible au bout des 10 ans.

EXERCICE 9.3.

On place un capital $C_0 = 1\,000 \in \text{à}\,4\,\%$ par an avec intérêts composés.

On note C_n le capital obtenu ou « valeur acquise », au bout de n années.

- 1. Calculer C_1 , C_2 , C_3 .
- 2. (a) Donner pour tout entier naturel n, l'expression de C_{n+1} en fonction de C_n .
 - (b) En déduire que les nombres C_0 , C_1 , C_2 , ..., C_n sont les termes consécutifs d'une suite géométrique de premier terme C_0 et dont on précisera la raison.
 - (c) Donner l'expression de C_n en fonction de n. Calculer C_{17} et C_{18} .
- 3. Au bout de combien d'années le capital initial aura-t-il doublé?

EXERCICE 9.4. 1. Calcul de la valeur acquise

- (a) Calculer la valeur acquise par un capital C de $2\,500 \in \text{plac\'e}$ à intérêts composés pendant 4 ans au taux trimestriel de $1\,\%$.
- (b) En déduire le montant des intérêts acquis. Arrondir au centime d'euros.

2. Calcul de taux

Déterminer à quel taux annuel il faut placer, à intérêts composés, une somme de 10 000 € pour que sa valeur acquise au bout de trois ans de placement soit de 12 000 €.

David ROBERT 121

9.3 Exercices BTS Comptabilité Gestion

EXERCICE 9.5.

Deux sociétés A et B proposent à ses clients les placements suivants :

- A propose des intérêts composés de 4,8 % par an;
- B propose des intérêts composés de 0,40 % par mois.

Dans les deux cas, les intérêts sont ajoutés au capital à la fin de chaque période de référence : année pour A et mois pour B.

- 1. Si un client place un capital de 100 000 €, que sera devenu ce capital au bout d'une année dans les deux cas?
- 2. Laquelle des deux sociétés offre le placement le plus avantageux pour les clients?

EXERCICE 9.6.

Déterminer la somme d'argent S, en euros, qu'il fallait placer au 01/01/2006, au taux annuel de 3,75% avec intérêts composés, pour disposer d'un capital C de $100\,000 \in$ au bout de 10 ans, le 01/01/2016. Arrondir au centime d'euro.

S est la valeur actuelle, au taux annuel de 3,75 %, d'un capital disponible de 100 000 € dans 10 ans.

EXERCICE 9.7.

Déterminer la valeur actuelle C_0 du capital C_{10} qui, placé à intérêts composés aujourd'hui au taux annuel de 3,70 %, vaudra 5 000 \in dans 10 ans.

EXERCICE 9.8.

On a placé 1 500 € sur un compte épargne il y a quatre ans, jour pour jour à intérêts composés, au taux annuel de 3,25 %. On souhaite disposer d'une somme de 2 000 € dans trois ans.

- 1. Déterminer la somme S_1 dont on dispose aujourd'hui sur le compte épargne, intérêts compris.
- 2. Déterminer le montant des intérêts perçus au bout de quatre ans.
- 3. Déterminer la somme S_2 qu'il faut déposer aujourd'hui sur le compte épargne pour disposer sur ce compte de 2 000 \in dans deux ans.

EXERCICE 9.9.

On place un capital initial $C_0 = 10\,000 \in$ à intérêts composés au taux annuel i.

On note C_n le capital disponible au bout de n années.

On recherche un algorithme permettant de déterminer la plus petite valeur de l'entier n pour laquelle le capital disponible C_n est supérieur ou égal à $20\,000\,$ €.

- 1. On suppose dans cette question que le taux d'intérêt annuel est de 4 %, c'est-à-dire i=0,04. Calculer C_1 et C_2 .
- 2. Soit *i* un nombre réel positif.
 - (a) Exprimer C_1 en fonction de i, puis C_2 en fonction de C_1 et de i.
 - (b) Soit n un nombre entier non nul. Exprimer C_{n+1} en fonction de C_n et i. Quelle est la nature de la suite (C_n) ?
- 3. On considère l'algorithme suivant :

BTS Comptabilité Gestion 9.3 Exercices

```
ENTREE : Saisir i
INSTRUCTIONS :
  n prend la valeur 0
  C prend la valeur 10 000
  Tant que C < 20 000
   n prend la valeur n+1
   C prend la valeur (1+i)*C
  Fin Tant que
SORTIE : Afficher n</pre>
```

(a) Quel est le test d'arrêt de la boucle de cet algorithme? Quand on sort-on de la boucle?

(b) Compléter le tableau suivant, en indiquant les valeurs de la variable C et du test lorsqu'on saisit dans l'algorithme i = 0,04.

_		C	C < 20000
Initialisation	n = 0	10000	Vrai
Boucle	<i>n</i> =		
	<i>n</i> =		

- 4. Programmer cet algorithme sur la calculatrice et le faire fonctionner. Vérifier que pour i = 0,04, l'affichage en sortie est n = 18.
- 5. Au bout de combien d'années le capital initial est-il doublé lorsque le taux de placement à intérêts composés est 3,5 %? 4,5 %?

EXERCICE 9.10.

On possède un capital de 20 000 € que l'on place à intérêts composés au taux annuel de 2,5 %. On considère l'algorithme suivant :

```
ENTREE : Saisir S
INSTRUCTIONS :
  n prend la valeur 0
  C prend la valeur 20 000
Tant que C<S
  n prend la valeur n+1
   C prend la valeur 1,025*C
Fin Tant que
SORTIE : Afficher n</pre>
```

- 1. (a) Justifier la ligne : C prend la valeur 1,025*C
 - (b) Quelle est la nature de la suite des valeurs de la variable C?
 - (c) À quoi correspond la variable C dans l'algorithme?
 - (d) À quelle condition sort-on de la boucle?
- 2. Programmer cet algorithme avec la calculatrice, et vérifier que, lorsqu'on entre pour S la valeur 30 000, l'algorithme affiche en sortie la valeur 17. Quel est le rôle de l'algorithme?
- 3. Déterminer, à l'aide de l'algorithme, le nombre d'années nécessaires pour au moins doubler le capital initial.

David ROBERT 123

9.3 Exercices BTS Comptabilité Gestion

EXERCICE 9.11. 1. Pour un placement à intérêts simples aux taux annuel T_a , le taux mensuel proportionnel $T_{\text{m-prop}} = \frac{T_a}{12}$.

On place $1\,500\,\in$ à intérêts simples pour une période de 80 jours au taux annuel de 3 %. Calculer l'intérêt perçu au bout de 80 jours si l'on applique un taux proportionnel.

2. Pour un placement à intérêts composés aux taux d'intérêt mensuel t_m , le taux d'intérêt annuel correspondant est le taux annuel équivalent t_a .

De la même façon, à un taux annuel t_a correspond un taux mensuel équivalent t_m . Le passage de l'un à l'autre s'effectue à l'aide de la formule : $1 + t_a = (1 + t_m)^1 2$. On place un capital à intérêts composés.

- (a) Calculer le taux annuel équivalent à un taux mensuel de 0,5 %.
- (b) Calculer le taux mensuel équivalent à un taux annuel de 10 %.
- 3. Compléter le tableau suivant pour un taux annuel de $10\,\%$:

	Taux proportionnel	Taux équivalent
Taux semestriel		
Taux trimestriel		
Taux bimensuel		
Taux mensuel		