Chapitre 1

Second degré

Sommaire

1.1	Activités 1	
1.2	Bilan et compléments	
	1.2.1 Définition, forme développée	
	1.2.2 Discriminant	
	1.2.3 Forme canonique	
	1.2.4 Racines	
	1.2.5 Forme factorisée, signe d'un trinôme	
	1.2.6 Résumé	
1.3	Exercices et problèmes	

Définition. Toute expression de la forme $a_0 + a_1 x^1 + a_2 x^2 + ... + a_n x^n$ où, pour tout $i, a_i \in \mathbb{R}$, avec $a_n \neq 0$ est appelé *polynôme de degré* n.

Toute expression de la forme $ax^2 + bx + c$ où $a \ne 0$ est donc un *polynôme de de degré 2* qu'on appelera aussi *expression du second degré* ou *trinôme*.

1.1 Activités

ACTIVITÉ 1.1.

Soient f et g deux fonctions définies sur \mathbb{R} par, respectivement : $x \mapsto f(x) = 2x^2 - x - 1$ et $x \mapsto g(x) = 2\left(x - \frac{1}{4}\right)^2 - \frac{9}{8}$.

- 1. Montrer que, pour tout réel x, f(x) = g(x).
- 2. En déduire l'extremum de f.
- 3. En déduire les éventuelles solutions de l'équation f(x) = 0.
- 4. En déduire le signe de *f* selon les valeurs de *x*

On vient de voir, sur un exemple, que lorsqu'une fonction trinôme $x \mapsto f(x) = ax^2 + bx + c$ est écrite sous la forme $x \mapsto f(x) = k(x - \alpha)^2 + \beta$, appelée *forme canonique* (on admettra qu'une telle forme existe toujours), alors il est plus facile d'en étudier les caractéristiques. Nous allons apprendre à la trouver, c'est-à-dire à trouver k, α et β à partir de a, b et c.

ACTIVITÉ 1.2 (Cas général).

Soit f la fonction définie sur \mathbb{R} par $x \mapsto f(x) = ax^2 + bx + c$ où a, b et c sont des réels, avec $a \neq 0$ et k, α et β trois réels tels qu'on a aussi $x \mapsto f(x) = k(x - \alpha)^2 + \beta$.

- 1. Développer $k(x-\alpha)^2 + \beta$.
- 2. On admet que deux fonctions trinômes $f: x \mapsto ax^2 + bx + c$ et $g: x \mapsto a'x^2 + b'x + c'$ sont égales pour tout $x \in \mathbb{R}$ si et seulement si a = a', b = b' et c = c'. En déduire a, b et c en fonction de c, a et c.
- 3. En déduire k, α et β en fonction de a, b et c.
- 4. Application : on donne $f(x) = -3x^2 + 6x 4$ pour tout $x \in \mathbb{R}$.
 - (a) Déterminer la forme canonique de f
 - (b) En déduire l'extremum de f.
 - (c) En déduire les éventuelles solutions de l'équation f(x) = 0.
 - (d) En déduire le signe de f selon les valeurs de x

1.2 Bilan et compléments

1.2.1 Définition, forme développée

Définition 1.1. On appelle *trinôme* ou *polynôme de degré 2* ou *polynôme du second degré* toute expression qui peut s'écrire sous la forme $ax^2 + bx + c$ où a, b et c sont des réels et $a \neq 0$. Cette forme s'appelle la *forme développée* du trinôme.

On appelle aussi *fonction trinôme* toute fonction $f: x \mapsto f(x)$ pouvant s'écrire sous la forme $f(x) = ax^2 + bx + c$ avec $a \ne 0$.

1.2.2 Discriminant

Définition 1.2. Soit $ax^2 + bx + c$ un trinôme. On appelle *discriminant* du trinôme, noté Δ , le nombre $\Delta = b^2 - 4ac$.

1.2.3 Forme canonique

Théorème. Tout trinôme $ax^2 + bx + c$ peut s'écrire sous la forme $k(x - \alpha)^2 + \beta$ où k, α et β sont des réels. Cette forme s'appelle la forme canonique du trinôme.

Preuve. L'activité 1.2 a montré que
$$k=a$$
, $\alpha=-\frac{b}{2a}$ et $\beta=-\frac{b^2-4ac}{4a}=-\frac{\Delta}{4a}$.

La forme canonique devient alors :

Propriété 1.1. Soit $ax^2 + bx + c$ un trinôme de discriminant Δ . Alors $ax^2 + bx + c = a(x - \alpha)^2 + \beta$ où $\alpha = -\frac{b}{2a}$ et $\beta = -\frac{\Delta}{4a}$.

C'est cette propriété qu'il faut retenir.

Propriété 1.2. Soit f la fonction trinôme $f: x \mapsto f(x) = ax^2 + bx + c$. Alors f admet un extremum (minimum si a positif ou maximum si a négatif) atteint en $x_0 = \alpha = -\frac{b}{2a}$ et qui vaut $f(x_0) = f(\alpha) = \beta = -\frac{b^2 - 4ac}{4a} = -\frac{\Delta}{4a}$.

Preuve. La preuve sera faite en classe.

 \Diamond

1.2.4 Racines

Définition 1.3. Soit un trinôme $ax^2 + bx + c$. On appelle *racine* du trinôme tout réel solution de l'équation $ax^2 + bx + c = 0$.

Propriété 1.3. Soit $ax^2 + bx + c$ un trinôme et $\Delta = b^2 - 4ac$ son discrimant.

- $Si \Delta < 0$, alors le trinôme **n'a pas de racine** \Leftrightarrow l'équation $ax^2 + bx + c = 0$ n'a pas de solution $dans \mathbb{R}$.
- $Si \Delta = 0$, alors le trinôme a une unique racine : $x_0 = \alpha = -\frac{b}{2a}$.
- $Si \Delta > 0$, alors le trinôme a **deux racines** : $x_1 = \frac{-b + \sqrt{\Delta}}{2a}$ et $x_2 = \frac{-b \sqrt{\Delta}}{2a}$

Preuve. La preuve sera faite en classe.

Remarques.

- Le signe de Δ permet de *discriminer*¹ les équations de type $ax^2 + bx + c = 0$ qui ont zéro, une ou deux solutions, c'est la raison pour laquelle on l'appelle le *discriminant*.
- Si $\Delta = 0$ les formules permettant d'obtenir x_1 et x_2 donnent $x_1 = x_0 = \alpha$ et $x_2 = x_0 = \alpha$; pour cette raison, on appelle parfois x_0 la *racine double* du trinôme.

1.2.5 Forme factorisée, signe d'un trinôme

Propriété 1.4. *Soit* $ax^2 + bx + c$ *un trinôme.*

- Si le trinôme a deux racines x_1 et x_2 alors $ax^2 + bx + c = a(x x_1)(x x_2)$.
- Si le trinôme a une racine x_0 alors $ax^2 + bx + c = a(x x_0)(x x_0) = a(x x_0)^2$.
- Si le trinôme n'a pas de racine, une telle factorisation est impossible.

Cette écriture, lorsqu'elle existe, est appelée forme factorisée du trinôme.

Preuve. On a obtenu les formes factorisées dans la démonstration précédente.

Propriété. Soit $ax^2 + bx + c$ un trinôme.

- Si le trinôme n'a pas de racine, $ax^2 + bx + c$ est strictement du signe de a pour tout x.
- Si le trinôme a une racine, $ax^2 + bx + c$ est du signe de a et s'annule quand $x = -\frac{b}{2a}$.
- Si le trinôme a deux racines x_1 et x_2 , $ax^2 + bx + c$ est:
 - strictement du signe de a quand $x \in]-\infty; x_1[\cup]x_2; +\infty[;$
 - strictement du signe opposé de a quand $x \in]x_1; x_2[$;
 - s'annule en x_1 et en x_2 .

On peut aussi énoncer cette propriété de la façon synthétique suivante :

Propriété 1.5. Un trinôme $ax^2 + bx + c$ est du signe de a, sauf entre les racines, si elles existent.

Preuve. La preuve sera faite en classe.

David ROBERT 3

^{1.} Discriminer. $v.\ tr.$ Faire la discrimination, c'est-à-dire l'action de distinguer l'un de l'autre deux objets, ici des équations

1.2.6 Résumé

Le tableau 1.1 de la présente page résume les choses à retenir sur le chapitre.

TABLE 1.1: Bilan du second degré

	$\Delta = b^2 - 4ac$				
	$\Delta < 0$	$\Delta = 0$	$\Delta > 0$		
	$ax^2 + bx + c = 0$ n'a pas de solution dans \mathbb{R}	$ax^2 + bx + c = 0$ a une solution: $x_0 = \alpha = -\frac{b}{2a}$	$ax^2 + bx + c = 0$ a deux solutions $x_1 = \frac{-b - \sqrt{\Delta}}{2a}$ et $x_2 = \frac{-b + \sqrt{\Delta}}{2a}$		
	$ax^2 + bx + c$ n'a pas de racine	$ax^2 + bx + c$ a une racine double	$x_2 = \frac{-b + \sqrt{\Delta}}{2a}$ $ax^2 + bx + c \text{ a deux}$ $racines$		
	Aucune factorisation	$ax^2 + bx + c = a(x - x_0)^2$	$ax^2 + bx + c =$ $a(x - x_1)(x - x_2)$		
Si <i>a</i> > 0	$\frac{y}{-\frac{b}{2a}O}$	$O \mid x_0 = -\frac{b}{2a} \mid x$	$\begin{array}{c c} & y \\ \hline & x_1 & -\frac{b}{2a} & x_2 \\ \hline & & \\ & &$		
	$ax^2 + bx + c > 0 \operatorname{sur} \mathbb{R}$	$ax^2 + bx + c \geqslant 0 \operatorname{sur} \mathbb{R}$	$ax^{2} + bx + c \geqslant 0 \text{ sur}$ $] - \infty; x_{1}] \cup [x_{2}; +\infty[$ et $ax^{2} + bx + c \leqslant 0 \text{ sur}$ $[x_{1}; x_{2}]$		
Si <i>a</i> < 0	$ \begin{array}{c c} & y \\ & -\frac{b}{2a} \\ \hline & 0 \\ \hline & x \end{array} $	$x_0 = -\frac{b}{2a} \qquad y$ $O \qquad x$	$\begin{array}{c c} & y \\ \hline & x_1 & \\ \hline & & x_2 \\ \hline & & & \\ & & & \\ \hline & & & \\ & & & \\ \hline & & & \\ & & & \\ \hline & & & \\ \hline & & & \\ & & & \\ \hline \end{array}$		
	$ax^2 + bx + c < 0 \operatorname{sur} \mathbb{R}$	$ax^2 + bx + c \leqslant 0 \operatorname{sur} \mathbb{R}$	$ax^{2} + bx + c \leq 0 \text{ sur}$ $] -\infty; x_{1}] \cup [x_{2}; +\infty[$ et $ax^{2} + bx + c \geq 0 \text{ sur}$ $[x_{1}; x_{2}]$		

Exercices et problèmes 1.3

EXERCICE 1.1.

Résoudre dans \mathbb{R} , sans utiliser les propriétés des trinômes, les équations suivantes :

•
$$x^2 = 9$$
:

•
$$(x-5)^2 = 3$$
;

•
$$(3x+5)^2 = (x+1)^2$$
;

•
$$x^2 = -3$$
;

•
$$(5x-4)^2 - (3x+7)^2 = 0$$
;

•
$$(5x-4)^2 - (3x+7)^2 = 0$$
; • $(2x-1)^2 + x(1-2x) = 4x^2 - 1$.

EXERCICE 1.2.

Résoudre dans \mathbb{R} les équations suivantes :

•
$$4x^2 - x - 3 = 0$$
:

•
$$(t+1)^2 + 3 = 0$$
;

•
$$x^2 + 10^{50}x + 25 \times 10^{98} = 0$$
;

•
$$x^2 - x - 2$$
:

•
$$x^2 + 3x = 0$$
;

•
$$2(2x+1)^2 - (2x+1) - 6 = 0$$
.

•
$$x^2 - 4x + 4 = 0$$
;

•
$$4x^2 - 9 = 0$$
;

•
$$3x^2 + 2x + 7 = 0$$
;

•
$$x^2 + 9 = 0$$
;

EXERCICE 1.3.

On note $P(x) = -2x^2 - x + 1$.

1. Résoudre
$$P(x) = 0$$
.

2. Factoriser
$$P(x)$$
.

3. Résoudre
$$P(x) \leq 0$$
.

EXERCICE 1.4.

Pour les fonctions données ci-après et définies sur \mathbb{R} :

- Déterminer les éventuelles valeurs de x pour lesquelles la fonction s'annule.
- Donner le signe de la fonction selon les valeurs de *x*.

1.
$$f: x \longmapsto x^2 + x + 1$$

$$3. \ h: x \longmapsto x^2 - x - 2$$

1.
$$f: x \mapsto x^2 + x + 1$$
 3. $h: x \mapsto x^2 - x - 2$ 5. $j: x \mapsto -x^2 + 2x - 2$

2.
$$g: x \mapsto -x^2 - x + 1$$
 4. $i: x \mapsto -x^2 + 2x - 1$

4.
$$i: x \longrightarrow -x^2 + 2x - 1$$

EXERCICE 1.5.

Résoudre les équations et inéquations suivantes :

•
$$\frac{2x-5}{x-1} = \frac{x-1}{x+1}$$

•
$$\frac{3x^2+x+1}{x^2-3x-10} > 0$$
.

•
$$\frac{x^2-3x+2}{-x^2+2x+3} \geqslant 0$$

EXERCICE 1.6.

Les algorithmes à écrire suivants prennent tous comme arguments trois réels a, b et c avec $a \neq 0$.

- 1. Écrire un algorithme donnant α et β de la forme canonique.
- 2. Écrire un algorithme renvoyant la valeur du discriminant du trinôme $ax^2 + bx + c$.
- 3. Écrire un algorithme renvoyant le signe du discriminant du trinôme $ax^2 + bx + c$.
- 4. Écrire un algorithme renvoyant le nombre de racines du trinôme $ax^2 + bx + c$.
- 5. Écrire un algorithme renvoyant le nombre de racines du trinôme $ax^2 + bx + c$ et la valeur de ces racines, le cas échéant.
- 6. Écrire un algorithme renvoyant le signe du trinôme $ax^2 + bx + c$ suivant les valeurs de x.

EXERCICE 1.7.

Soit *f* une fonction définie sur \mathbb{R} par $f: x \mapsto ax^2 + bx + c$ où $a \neq 0$.

- 1. Montrer que si a et c sont de signes opposés alors l'équation f(x) = 0 admet deux solutions.
- 2. Peut-on affirmer que si l'équation f(x) = 0 admet deux solutions alors a et c sont de signes opposés?

EXERCICE 1.8.

Soit f la fonction polynôme définie sur \mathbb{R} par $f: x \longmapsto -x^3 - 3x^2 + 13x + 15$.

- 1. Montrer que x = -1 est racine de ce polynôme.
- 2. Déterminer trois réels a, b et c tels que $f(x) = (x+1)(ax^2 + bx + c)$.
- 3. (a) Terminer la factorisation de f(x).
 - (b) Résolvez l'inéquation f(x) > 0.

EXERCICE 1.9.

Soit f la fonction définie sur \mathbb{R} par $f: x \mapsto -3x^2 + 2x + 1$. On note \mathscr{C} la courbe représentative de f dans un repère $(0; \vec{\imath}, \vec{\jmath})$.

- 1. Précisez la nature de la courbe \mathscr{C} et les coordonnées de son sommet S.
- 2. Montrer que la courbe $\mathscr C$ coupe l'axe des ordonnées en un point dont on précisera les coordonnées.
- 3. Montrer que la courbe $\mathscr C$ coupe l'axe des abscisses en deux points A et B dont on précisera les coordonnées.
- 4. Pour quelles valeurs de x la courbe $\mathscr C$ est-elle situé au dessus de l'axe des abscisses?

EXERCICE 1.10.

Voici quatre équations:

1.
$$y = x^2 - 6x + 8$$

2.
$$y = 2(x-2)(x-4)$$

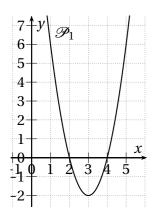
3.
$$y = x^2 + 1$$

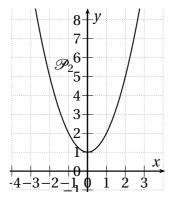
4.
$$y = 1 - x^2$$

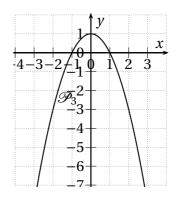
La figure 1.1 de la présente page propose quatre paraboles.

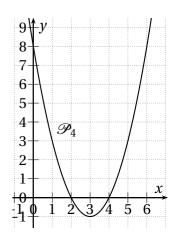
Retrouver l'équation de chacune de ces paraboles en justifiant.

FIGURE 1.1: Paraboles de l'exercice 1.10



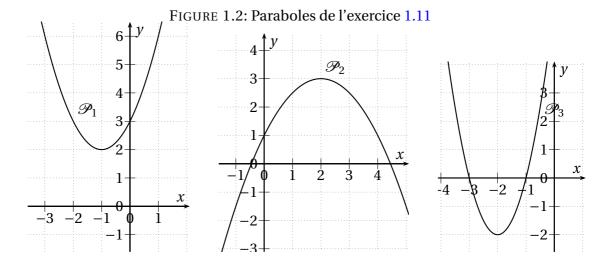






EXERCICE 1.11.

Chacune des trois paraboles de la figure 1.2 de la présente page est la représentation graphique d'une fonction trinôme. Déterminer l'expression de chacune de ces fonctions.



EXERCICE 1.12.

On donne, définies sur \mathbb{R} , les fonctions $f: x \longmapsto x^2 + x - 1$ et $g: x \longmapsto x + 3$.

- 1. Déterminer les coordonnées des éventuels points d'intersection des courbes de *f* et de *g*.
- 2. Déterminer les positions relatives des courbes de f et de g c'est-à-dire les valeurs de x pour lesquelles la courbe de f et au-dessus de celle de g et réciproquement.

EXERCICE 1.13.

Mêmes questions que l'exercice précedent avec $f: x \longmapsto x^2$ et $g: x \longmapsto x$.

EXERCICE 1.14.

Une entreprise produit de la farine de blé.

On note q le nombre de tonnes de farine fabriquée avec 0 < q < 80.

La tonne est vendue 120 € et le coût de fabrication de q tonnes de farine est donné, en €, par $C(q) = 2q^2 + 10q + 900$.

Déterminer la quantité de farine à produire pour que la production soit rentable.

EXERCICE 1.15.

Trouver deux nombres dont la somme est égale à 57 et le produit égal à 540.

EXERCICE 1.16.

Quelle largeur doit-on donner à la croix pour que son aire soit égale à l'aire restante du drapeau?

