Devoir surveillé n°4

Suites – Généralités sur les fonctions – Statistiques

EXERCICE 4.1 (8 points).

Le tableau suivant donne les résultats (arrondis au point supérieur) obtenus par une classe de Seconde lors d'un devoir, dit *devoir* n^o 1, en mathématiques :

Notes x_i	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Effectifs n	0	0	1	2	3	0	2	7	2	2	0	1	0	2	0	1	3	1	3	4	1

- 1. (a) Déterminer la note moyenne \overline{x} , arrondie au dixième, et l'écart-type s, arrondi au centième, de cette série en détaillant brièvement les calculs (les pointillés sont autorisés dans la rédaction).
 - (b) Déterminer la médiane m et les premier et troisième quartiles Q_1 et Q_3 de cette série en précisant la façon dont ils ont été obtenus.
- 2. Le professeur considère que si l'écart entre la moyenne et la médiane est supérieur à 0,75, alors il est important. Est-ce le cas? Comment l'expliquer?
- 3. (a) Représenter, sur la figure 4.1 donnée ci-dessous, le diagramme en boite de la série statistique correspondant au devoir nº 1.
 Sur cette figure, on a déjà représenté le diagramme en boite d'une série constituée des résultats d'un autre devoir, dit *devoir nº 2*, de mathématiques de cette Seconde.
 En vous basant sur ces diagrammes, comparer les résultats de cette classe à ces deux devoirs.
 - (b) Le devoir n° 2 a une moyenne et un écart-type respectivement de $\overline{x}' \approx 16,0$ et $s' \approx 3,95$. Comparer les résultats des deux devoirs à l'aide de ces paramètres statistiques.
- 4. Question bonus : Les résultats des deux devoirs sont très différents, pourtant il s'agit de la même classe; comment pourrait-on expliquer cette différence?

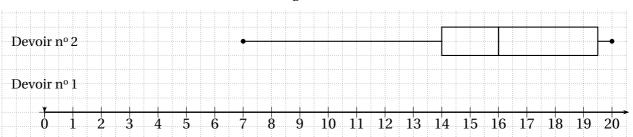


FIGURE 4.1: Figure de l'exercice 4.1

EXERCICE 4.2 (8 points).

Aujourd'hui les chardons ont colonisé $300\,\mathrm{m}^2$ d'un jardin de $1\,200\,\mathrm{m}^2$. Chaque semaine, la surface envahie augmente de $4\,\%$ par le développement des racines auquel s'ajoutent $13\,\mathrm{m}^2$ dus à la dissémination.

On note u_n l'aire du jardin envahie par les chardons, en m², après n semaines; on a donc $u_0 = 300 \,\mathrm{m}^2$.

- 1. (a) Calculer u_1 et u_2 .
 - (b) La suite (u_n) est-elle arithmétique? La suite (u_n) est-elle géométique? Justifier.
- 2. Justifier que $u_{n+1} = 1,04u_n + 13$.
- 3. On définit la suite (v_n) pour tout entier naturel n par $v_n = u_n + 325$.
 - (a) Montrer que la suite (v_n) est géométrique de raison q=1,04 et en préciser le premier terme
 - (b) Exprimer v_n en fonction de n pour tout entier naturel n.
 - (c) En déduire que $u_n = 625 \times 1,04^n 325$ pour tout entier naturel n.
- 4. Étudier la monotonie de la suite (u_n) . Interpréter le résultat dans le contexte de l'exercice.
- 5. À l'aide de l'algorithme ci-dessous, on se propose de déterminer nombre de semaines à partir duquel les chardons auront colonisé la moitié de la surface du jardin.

Initialisation $u \leftarrow 300$ $n \leftarrow 0$ Traitement Tant que ... faire $n \leftarrow n+1$ $u \leftarrow ...$ Fin Tant que Sortie n

- (a) Recopier et compléter l'algorithme ci-dessus.
- (b) Qu'affiche cet algorithme? Interpréter ce résultat dans le contexte de l'exercice.

EXERCICE 4.3 (6 points).

On donne le tableau de variations de la fonction u définie sur l'intervalle [-1; 7]:

х	-1		2		5	7
и	-1	\	-4	/	16	 9

On sait de plus que u(3) = 0.

- 1. Déduire pour chacune des fonctions suivantes :
 - son ensemble de définition \mathcal{D} (on justifiera si ce n'est pas le même que celui de u);
 - son tableau de variations (on justifiera systématiquement).
 - (a) $f: x \mapsto u(x) 5$
 - (b) $g: x \mapsto -2u(x)$
 - (c) $h: x \longmapsto \sqrt{u(x)}$
 - (d) $j: x \longmapsto \frac{1}{u(x)}$
 - (e) $k: x \mapsto |u(x)|$
- 2. Question bonus (hors barème) : Donner, sans justifier, le tableau des variations de la fonction $\ell: x \longmapsto \frac{1}{\sqrt{|\mu(x)|}}$.

EXERCICE 4.4 (8 points).

L'objectif de cet exercice est d'étudier la fonction f définie sur $\mathbb{R}\setminus\{-2\}$ par :

$$f: x \longmapsto \frac{2x^2 + 2x - 7}{x + 2}$$

On appelle \mathscr{C} sa courbe représentative.

- 1. Déterminer les points d'intersection de $\mathscr C$ avec chacun des axes de coordonnées. Les valeurs exactes des coordonnées sont attendues.
- 2. (a) On considère la fonction g définie sur $\mathbb{R}\setminus\{-2\}$ par : $g(x) = \frac{-3}{x+2}$. Étudier les variations de g en justifiant soigneusement.
 - (b) Montrer que, pour tout $x \in \mathbb{R} \setminus \{-2\}$, $f(x) = 2x 2 + \frac{-3}{x+2}$.
 - (c) Déduire des questions 2a et 2b les variations de f sur $\mathbb{R}\setminus\{-2\}$.
- 3. La droite \mathcal{D} est d'équation y = x 2.
 - (a) Montrer que, pour $x \neq -2$, $f(x) (x-2) = \frac{x^2 + 2x 3}{x+2}$.
 - (b) Étudier le signe de $\frac{x^2+2x-3}{x+2}$ selon les valeurs de x.
 - (c) En déduire les positions relatives de \mathcal{D} et \mathscr{C} sur $\mathbb{R}\setminus\{-2\}$.