Nom:	
Prénom :	
Classe :	

Devoir commun de Mathématiques (Seconde)

Durée : 2 heures Le barème est indicatif, le total est sur 50

Pour les exercices 1.et 3. le barème est le suivant : (par question)

Pour l'exercice 6. le barème est le suivant :

• une réponse juste rapporte 1 point ;

(par question)

• une réponse fausse enlève 0.5 point ;

une réponse juste rapporte 0.5 point;
une réponse fausse enlève 0.25 point;

• un absence de réponse rapporte 0 point.

• un absence de réponse rapporte 0 point.

Pour chacun de ces trois exercices, un éventuel total négatif est ramené à 0.

Exercice nº1: (7 points)

Répondre aux questions suivantes : (en entourant la réponse correcte) *Il y a à chaque fois exactement une réponse correcte.*

proposition	réponse a	réponse b	réponse c
Le nombre $1,4 \times 10^{-18}$ s'écrit aussi	140×10^{-20}	140×10^{-16}	$0,0014 \times 10^{-16}$
Le réel $\frac{\frac{\pi}{2}}{\frac{\pi}{3}}$ appartient à	Q	N	Z
Le nombre $\frac{2^3 \times 15^2}{12^4}$ s'écrit aussi :	$2^{-3} \times 3^{-2} \times 5^2$	$2^{-5} \times 3^{-2} \times 5^{-2}$	$2^{-5} \times 3^{-2} \times 5^2$
L'ensemble des solutions de $-\frac{1}{2}x + 3 \ge 0$ est] −∞;6]	$[-\frac{5}{2};+\infty[$	[6;+∞[
Le réel $\frac{4-2\sqrt{2}}{2}$ se simplifie en	$2-2\sqrt{2}$	$2-\sqrt{2}$	$4-\sqrt{2}$
Le double du carré de la somme de <i>a</i> et de <i>b</i> est	$2a^2 + 2b^2$	$(2a+2b)^2$	$2(a+b)^2$
] – ∞;3[∩[2;4] est égal à] −∞;4]	[2;3[] −∞;2]

Exercice nº2: (7 points)

Les représentations graphiques \mathcal{C}_f et \mathcal{C}_g de deux fonctions f et g définies sur [-2;5] sont données ci-contre :

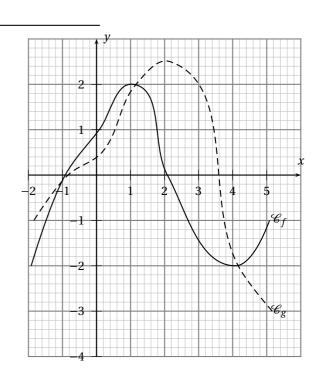
Répondre, à l'aide du graphique, aux questions suivantes :

- 1. L'ensemble des solutions de l'équation f(x) = g(x) sur [-2;5] est :
- 2. L'ensemble des solutions de l'inéquation f(x) < g(x) sur [-2;5] est :
- 3. L'ensemble des solutions de l'inéquation $f(x) \le 0$ sur [-2;5] est :
- 4. Le tableau de signes de f sur [-2;5] est :

X	
signe de $f(x)$	

5. Le tableau de variations de f sur [-2;5] est :

x	
variations de f	



Exercice nº3: (4 points)

On donne ci-dessous le tableau de variations d'une fonction g définie sur l'intervalle [-3;7]:

x	-3	-1	2	4	7
variations de g	5	-1	√ 3 \		<i>y</i> 9

Cocher la réponse correcte :

Question: vrai faux on ne peut pas savoir 0 est le minimum de g sur [-2;7]

g(0) < g(1)

g(3)>g(5)g(3) = 2

Exercice nº4: (9 points)

On considère la fonction f définie sur $\mathbb R$ par :

$$f(x) = (2x-1)^2 - 3(x+2)(2x-1)$$

- 1. Démontrer que, pour tout réel x, f(x) peut aussi s'écrire
 - (a) $f(x) = -2x^2 13x + 7$ (forme 1)
 - (b) f(x) = (2x-1)(-x-7) (forme 2)
- 2. Répondre aux questions suivantes en choisissant, à chaque fois, la forme la plus adaptée (forme 1 ou 2).
- (a) Calculer les images par f de $-\frac{1}{2}$ puis de $\sqrt{2}-1$.
- (b) Déterminer l'ensemble des réels x ayant comme image 0 par f.
- (c) Résoudre dans \mathbb{R} l'équation f(x) = 7.
- (d) Résoudre dans \mathbb{R} l'équation f(x) = -13x 11.

Exercice n°5: (12 points)

Soient *ABCD* un carré de côté de mesure 5 et *M* un point de [*BC*]. On note:

- x = BM;
- P, Q et L les points des segments respectifs [CD],[DA] et [AB] tels que :

$$CP = DQ = AL = BM = x$$

On admettra que les quatre triangles hachurés ont la même aire.

- 1. Quel est l'ensemble I des valeurs possibles de *x*?
- 2. Par la suite, x désigne un réel appartenant à I.
 - (a) Exprimer, pour tout réel x de I, AQ en fonction de x.
 - (b) Exprimer l'aire du triangle *ALQ* en fonction de *x*.
 - (c) En déduire l'aire f(x) du quadrilatère LMPQ en fonction de x.
 - (d) Montrer que f(x) peut aussi s'écrire sous la forme :

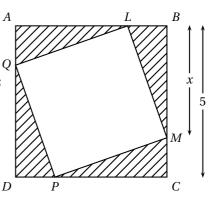
$$f(x) = 2\left(x - \frac{5}{2}\right)^2 + \frac{25}{2}$$

(a) Compléter, à l'aide de la calculatrice, le tableau de valeurs ci-dessous :

On donnera les valeurs décimales exactes.

х	0	0,5	1	1,5	2	2,5	3	3,5	4	4,5	5
f(x)					13						

- (b) Tracer la courbe représentant f (unités : 2cm pour 1 en abscisse, 0,5cm pour 1 en ordonnées)
- (c) Déterminer graphiquement la valeur de *x* pour laquelle l'aire de *LMPQ* semble minimale. Quelle pourrait cette aire minimale?
- (a) Exprimer, à l'aide de 2. (d), $f(x) f(\frac{5}{2})$.
 - (b) Montrer que, pour tout x dans I, $f(x) f(\frac{5}{2}) \ge 0$.
 - (c) En déduire que f admet un minimum et préciser la valeur en laquelle ce minimum est atteint.



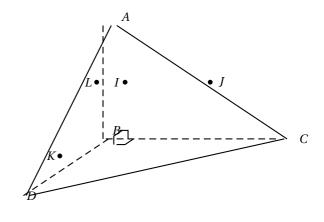
Exercice nº6: (4,5 points)

Soit ABCD un tétraèdre.

- I est le milieu de [AB];
- *J* est le milieu de [AC];
- *K* et *L* sont deux points du segment [*AD*], distincts de son milieu et de ses extrémités;
- Les angles \widehat{ABD} , \widehat{DBC} et \widehat{ABC} sont des angles droits;
- BD = 8 cm, BC = 9 cm et BA = 6 cm.

Compléter, sans justifications, le tableau suivant :

affirmation	vrai	faux
Le point K est un point du plan (ACD)		
Le point I est un point du plan (ACD)		
Les points I, J et L sont alignés		
Les droites (IK) et (BD) sont sécantes		
Les droites (JK) et (AB) sont sécantes		
Les droites (JL) et (CD) sont sécantes		
Le droite (IJ) est sécante au plan (BCD)		
Les plans (IJK) et (BCD) sont parallèles		
le volume du tétraèdre <i>ABCD</i> est 216cm ³		



Exercice n°7: (6.5 points)

Soit ABCD un tétraèdre.

E, F et G sont des points des segments respectifs [AB], [AD] et [AC] tels qu' aucun des côtés du triangle EFG ne soit parallèle à un côté du triangle BCD.

- 1. Montrer que les droites (EF) et (BD) sont sécantes en un point I. Le placer sur la figure.
- 2. Construire le point *J*, intersection de la droite (*EG*) et du plan (*BCD*). *On laissera les traits de construction apparents*.
- 3. Quelle est l'intersection des plans (*EFG*) et (*BCD*) ? Justifier.
- 4. (a) Soit *K* l'intersection des droites (*FG*) et (*CD*). Placer le point *K*.
 - (b) Que peut-on en déduire quant aux points *I*, *J* et *K* ? Justifier.

