DEVOIR SURVEILLÉ N°4

EXERCICE 1 6,5 points

On donne le tableau des variations de la fonction f définie sur [-5;4]:

x	-5	-3	0	2	4
f(x)	-1	0	-2	0	3

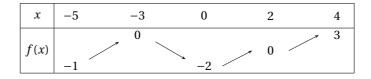
- 1. Sans justification, sur le tableau donné en annexe page suivante, entourer la proposition correcte, sachant que :
 - il y a à chaque fois exactement une proposition correcte;
 - une réponse juste rapporte 1 point;
 - une réponse fausse enlève 0,5 point;
 - une absence de réponse rapporte 0 point;
 - un total négatif à cette question est ramené à zéro.
- 2. (a) Résoudre f(x) > 0.
 - (b) Combien l'équation f(x) = -1 a-t-elle de solutions ?
 - (c) Quels sont les minimum et maximum de la fonction?

EXERCICE 2 4 points

La fonction f est définie sur $\mathbb{R} - \{-2\}$ par :

$$f(x) = 2 - \frac{1}{4 + 2x}$$

- 1. Compléter le tableau donné en annexe page suivante en indiquant dans la première colonne l'opération effectuée et dans la seconde l'expression obtenue.
- 2. Étudier le sens de variation de la fonction f sur] $-\infty$; -2[.


EXERCICE 3 9,5 points

La fonction f est définie sur \mathbb{R} par : $f(x) = x^2 - 4x - 1$. On appelle \mathcal{C}_f sa représentation graphique.

- 1. Montrer que $f(x) = (x-2)^2 5$.
- 2. En déduire que la fonction f admet comme minimum -5.
- 3. Résoudre les équations suivantes (on donnera les valeurs exactes) :
 - (a) f(x) = -1;
 - (b) f(x) = 0;
 - (c) f(x) = -6.
- 4. Déterminer les *valeurs exactes* des images par f des nombres suivants : $1-\sqrt{2}$ et $\frac{2}{3}$.
- 5. Déterminer les valeurs exactes des antécédents par f de 1.
- 6. Répondre aux questions suivantes en justifiant à l'aide d'une courte phrase.
 - (a) Le point A de coordonnées (0 ; -2) appartient-il à \mathscr{C}_f ?
 - (b) Le point B de coordonnées (1 ; -4) appartient-il à \mathscr{C}_f ?
- 7. La fonction g est définie sur \mathbb{R} par g(x) = -4x + 1. On appelle \mathcal{C}_g sa représentation graphique.
 - (a) Déterminer par le calcul les *valeurs exactes* des coordonnées des points d'intersection de \mathscr{C}_f et de \mathscr{C}_g .
 - (b) À l'aide d'une calculatrice graphique, résoudre $f(x) \ge g(x)$.

ANNEXES

TAB. 1 – QCM de l'exercice 1

Comparaison de	Proposition A	Proposition B	Proposition C	Proposition D
f(1) et 2	f(1) > 2	f(1) < 2	f(1) = 2	on ne peut pas savoir
f(-2) et $f(-4)$	f(-2) > f(-4)	f(-2) < f(-4)	f(-2) = f(-4)	on ne peut pas savoir
f(-1) et $f(3)$	f(-1) > f(3)	f(-1) < f(3)	f(-1) = f(3)	on ne peut pas savoir
f(-1) et $f(-2)$	f(-1) > f(-2)	f(-1) < f(-2)	f(-1) = f(-2)	on ne peut pas savoir
f(2,5) et $f(3)$	f(2,5) > f(3)	f(2,5) < f(3)	f(2,5) = f(3)	on ne peut pas savoir

TAB. 2 – À compléter pour l'exercice 2

$$f(x) = 2 - \frac{1}{4+2x}$$

Opération	Expression obtenue
	x
	30
×2	2x
•••••	
•••••	
	f(x)
	f(x)

Barème

 EXERCICE 1
 6,5 points
 EXERCICE 2
 4 points
 EXERCICE 3
 9,5 points

 1. 5 points
 1. 1,5 point
 1. 1 point

2. 1,5 point 2. 2,5 points

3. 2 points
4. 1 point
5. 0,5 point
6. 1 point

7. (a) 2 points (b) 0,5 point

2. 1,5 point