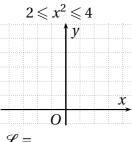
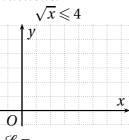
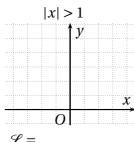
Devoir surveillé n°4: Fonctions – Géométrie analytique

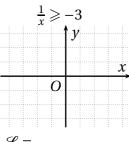
L'énoncé est à rendre avec sa copie.

La question de cours est à traiter en premier et à rendre avant d'aborder la suite. La calculatrice n'est autorisée qu'après avoir rendu la question de cours. Le barème n'est qu'indicatif (le devoir est noté sur 30 points).


QUESTION DE COURS (2,5 points).


Étudier les positions relatives des courbes des fonctions $x \mapsto x$ et $x \mapsto x^2$ sur \mathbb{R} .


EXERCICE 1 (6 points).


Cet exercice est à traiter sur l'énoncé.

Déterminer graphiquement l'ensemble $\mathcal S$ des solutions de chacune des inéquations suivantes. On construira avec soin les représentations graphiques des fonctions de référence concernées et on fera apparaître les traits de constructions.

$$\mathcal{S} = \dots$$

EXERCICE 2 (5,5 points).

On donne le tableau de variations de la fonction u définie sur l'intervalle [-1; 7]:

х	-1	2	5	7
и	-2	-4	16	9

1. On sait que u(3) = 0. Placer cette information dans le tableau cidessus.

- 2. En déduire, en justifiant à chaque fois, pour chacune des fonctions suivantes :
 - son ensemble de définition ∅;
 - son tableau de variations.

(a)
$$f(x) = u(x) - 5$$

(b)
$$g(x) = -2u(x) + 3$$

(c)
$$h(x) = \sqrt{u(x)}$$

(d)
$$j(x) = \frac{1}{u(x)}$$

EXERCICE 3 (7 points).

L'objectif de cet exercice est d'étudier la fonction f définie sur]-5; $+\infty$ [par :

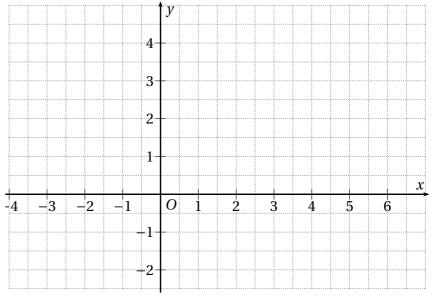
$$f(x) = \frac{2x^2 + 9x - 6}{x + 5}$$

On appelle \mathscr{C} sa courbe représentative.

- 1. Déterminer les points d'intersection de & avec chacun des axes de coordonnées.
- 2. On considère la fonction g définie sur] 5; + ∞ [par : $g(x) = -\frac{1}{x+5}$. Étudier les variations de g en justifiant soigneusement.
- 3. Montrer que, pour tout $x \in]-5$; $+\infty[:f(x)=2x-1-\frac{1}{x+5}]$.
- 4. Déduire des questions 2 et 3 les variations de f sur] -5; $+\infty$ [.
- 5. La droite \mathscr{D} est d'équation y = 2x 1. Étudier les positions relatives de \mathscr{D} et \mathscr{C} sur] 5; $+\infty$ [.

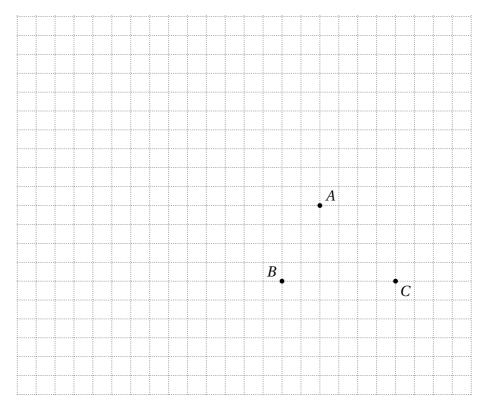
EXERCICE 4 (3 points).

Le plan est muni d'un repère orthonormé $(O; \vec{\imath}, \vec{\jmath})$.


On représentera dans le repère fourni ci-dessous les éléments rencontrés dans l'exercice.

On donne les points A(1; 3), B(-2; 1) et C(1; -1).

- 1. Soit Δ la droite passant par A et parallèle à la droite (BC). Déterminer une équation
- 2. Soit F(1; 1) et \mathscr{C} le cercle de centre F passant par A.


cartésienne de la droite Δ .

- 3. Déterminer une équation cartésienne de \mathscr{C} .
- 4. (Question bonus) Déterminer les coordonnées des points d'intersection de \mathscr{C} avec l'axe des abscisses (Ox).

EXERCICE 5 (6 points). Soit *ABC* un triangle.

- 1. (a) Contruire le point D tel que : $\overrightarrow{AD} = 2\overrightarrow{CA} + 3\overrightarrow{AB}$.
 - (b) Montrer que B, C et D sont alignés. On pourra exprimer \overrightarrow{CD} en fonction $de \overrightarrow{CB}$.
- 2. Soit *E* le point tel que $\overrightarrow{AE} + 3\overrightarrow{EB} = \overrightarrow{0}$.
 - (a) Exprimer \overrightarrow{AE} en fonction de \overrightarrow{AB} , puis placer E.
 - (b) Exprimer \overrightarrow{CE} en fonction de \overrightarrow{CA} et de \overrightarrow{AB} .
 - (c) Les droites (AD) et (CE) sont-elles parallèles?

